The JP Morgan SCTO strategy

This strategy goes over JP Morgan’s SCTO strategy, a basic XL-sector/RWR rotation strategy with the typical associated risks and returns with a momentum equity strategy. It’s nothing spectacular, but if a large bank markets it, it’s worth looking at.

Recently, one of my readers, a managing director at a quantitative investment firm, sent me a request to write a rotation strategy based around the 9 sector spiders and RWR. The way it works (or at least, the way I interpreted it) is this:

Every month, compute the return (not sure how “the return” is defined) and rank. Take the top 5 ranks, and weight them in a normalized fashion to the inverse of their 22-day volatility. Zero out any that have negative returns. Lastly, check the predicted annualized vol of the portfolio, and if it’s greater than 20%, bring it back down to 20%. The cash asset–SHY–receives any remaining allocation due to setting securities to zero.

For the reference I used, here’s the investment case document from JP Morgan itself.

Here’s my implementation:

Step 1) get the data, compute returns.

require(quantmod)
require(PerformanceAnalytics)
symbols <- c("XLB", "XLE", "XLF", "XLI", "XLK", "XLP", "XLU", "XLV", "XLY", "RWR", "SHY")
getSymbols(symbols, from="1990-01-01")
prices <- list()
for(i in 1:length(symbols)) {
  prices[[i]] <- Ad(get(symbols[i]))  
}
prices <- do.call(cbind, prices)
colnames(prices) <- gsub("\\.[A-z]*", "", colnames(prices))
returns <- na.omit(Return.calculate(prices))

Step 2) The function itself.

sctoStrat <- function(returns, cashAsset = "SHY", lookback = 4, annVolLimit = .2,
                      topN = 5, scale = 252) {
  ep <- endpoints(returns, on = "months")
  weights <- list()
  cashCol <- grep(cashAsset, colnames(returns))
  
  #remove cash from asset returns
  cashRets <- returns[, cashCol]
  assetRets <- returns[, -cashCol]
  for(i in 2:(length(ep) - lookback)) {
    retSubset <- assetRets[ep[i]:ep[i+lookback]]
    
    #forecast is the cumulative return of the lookback period
    forecast <- Return.cumulative(retSubset)
    
    #annualized (realized) volatility uses a 22-day lookback period
    annVol <- StdDev.annualized(tail(retSubset, 22))
    
    #rank the forecasts (the cumulative returns of the lookback)
    rankForecast <- rank(forecast) - ncol(assetRets) + topN
    
    #weight is inversely proportional to annualized vol
    weight <- 1/annVol
    
    #zero out anything not in the top N assets
    weight[rankForecast <= 0] <- 0
    
    #normalize and zero out anything with a negative return
    weight <- weight/sum(weight)
    weight[forecast < 0] <- 0
    
    #compute forecasted vol of portfolio
    forecastVol <- sqrt(as.numeric(t(weight)) %*% 
                          cov(retSubset) %*% 
                          as.numeric(weight)) * sqrt(scale)
    
    #if forecasted vol greater than vol limit, cut it down
    if(as.numeric(forecastVol) > annVolLimit) {
      weight <- weight * annVolLimit/as.numeric(forecastVol)
    }
    weights[[i]] <- xts(weight, order.by=index(tail(retSubset, 1)))
  }
  
  #replace cash back into returns
  returns <- cbind(assetRets, cashRets)
  weights <- do.call(rbind, weights)
  
  #cash weights are anything not in securities
  weights$CASH <- 1-rowSums(weights)
  
  #compute and return strategy returns
  stratRets <- Return.portfolio(R = returns, weights = weights)
  return(stratRets)      
}

In this case, I took a little bit of liberty with some specifics that the reference was short on. I used the full covariance matrix for forecasting the portfolio variance (not sure if JPM would ignore the covariances and do a weighted sum of individual volatilities instead), and for returns, I used the four-month cumulative. I’ve seen all sorts of permutations on how to compute returns, ranging from some average of 1, 3, 6, and 12 month cumulative returns to some lookback period to some two period average, so I’m all ears if others have differing ideas, which is why I left it as a lookback parameter.

Step 3) Running the strategy.

scto4_20 <- sctoStrat(returns)
getSymbols("SPY", from = "1990-01-01")
spyRets <- Return.calculate(Ad(SPY))
comparison <- na.omit(cbind(scto4_20, spyRets))
colnames(comparison) <- c("strategy", "SPY")
charts.PerformanceSummary(comparison)
apply.yearly(comparison, Return.cumulative)
stats <- rbind(table.AnnualizedReturns(comparison),
               maxDrawdown(comparison),
               CalmarRatio(comparison),
               SortinoRatio(comparison)*sqrt(252))
round(stats, 3)

Here are the statistics:

                          strategy   SPY
Annualized Return            0.118 0.089
Annualized Std Dev           0.125 0.193
Annualized Sharpe (Rf=0%)    0.942 0.460
Worst Drawdown               0.165 0.552
Calmar Ratio                 0.714 0.161
Sortino Ratio (MAR = 0%)     1.347 0.763

               strategy         SPY
2002-12-31 -0.035499564 -0.05656974
2003-12-31  0.253224759  0.28181559
2004-12-31  0.129739794  0.10697941
2005-12-30  0.066215224  0.04828267
2006-12-29  0.167686936  0.15845242
2007-12-31  0.153890329  0.05146218
2008-12-31 -0.096736711 -0.36794994
2009-12-31  0.181759432  0.26351755
2010-12-31  0.099187188  0.15056146
2011-12-30  0.073734427  0.01894986
2012-12-31  0.067679129  0.15990336
2013-12-31  0.321039353  0.32307769
2014-12-31  0.126633020  0.13463790
2015-04-16  0.004972434  0.02806776

And the equity curve:

To me, it looks like a standard rotation strategy. Aims for the highest momentum securities, diversifies to try and control risk, hits a drawdown in the crisis, recovers, and slightly lags the bull run on SPY. Nothing out of the ordinary.

So, for those interested, here you go. I’m surprised that JP Morgan itself markets this sort of thing, considering that they probably employ top-notch quants that can easily come up with products and/or strategies that are far better.

Thanks for reading.

NOTE: I am a freelance consultant in quantitative analysis on topics related to this blog. If you have contract or full time roles available for proprietary research that could benefit from my skills, please contact me through my LinkedIn here.

The Logical Invest Enhanced Bond Rotation Strategy (And the Importance of Dividends)

This post will display my implementation of the Logical Invest Enhanced Bond Rotation strategy. This is a strategy that indeed does work, but is dependent on reinvesting dividends, as bonds pay coupons, which means bond ETFs do likewise.

The strategy is fairly simple — using four separate fixed income markets (long-term US government bonds, high-yield bonds, emerging sovereign debt, and convertible bonds), the strategy aims to deliver a low-risk, high Sharpe profile. Every month, it switches to two separate securities, in either a 60-40 or 50-50 split (that is, a 60-40 one way, or the other). My implementation for this strategy is similar to the ones I’ve done for the Logical Invest Universal Investment Strategy, which is to maximize a modified Sharpe ratio in a walk-forward process.

Here’s the code:

LogicInvestEBR <- function(returns, lowerBound, upperBound, period, modSharpeF) {
  count <- 0
  configs <- list()
  instCombos <- combn(colnames(returns), m = 2)
  for(i in 1:ncol(instCombos)) {
    inst1 <- instCombos[1, i]
    inst2 <- instCombos[2, i]
    rets <- returns[,c(inst1, inst2)]
    weightSeq <- seq(lowerBound, upperBound, by = .1)
    for(j in 1:length(weightSeq)) {
      returnConfig <- Return.portfolio(R = rets, 
                      weights = c(weightSeq[j], 1-weightSeq[j]), 
                      rebalance_on="months")
      colnames(returnConfig) <- paste(inst1, weightSeq[j], 
                                inst2, 1-weightSeq[j], sep="_")
      count <- count + 1
      configs[[count]] <- returnConfig
    }
  }
  
  configs <- do.call(cbind, configs)
  cumRets <- cumprod(1+configs)
  
  #rolling cumulative 
  rollAnnRets <- (cumRets/lag(cumRets, period))^(252/period) - 1
  rollingSD <- sapply(X = configs, runSD, n=period)*sqrt(252)
  
  modSharpe <- rollAnnRets/(rollingSD ^ modSharpeF)
  monthlyModSharpe <- modSharpe[endpoints(modSharpe, on="months"),]
  
  findMax <- function(data) {
    return(data==max(data))
  }
  
  #configs$zeroes <- 0 #zeroes for initial periods during calibration
  weights <- t(apply(monthlyModSharpe, 1, findMax))
  weights <- weights*1
  weights <- xts(weights, order.by=as.Date(rownames(weights)))
  weights[is.na(weights)] <- 0
  weights$zeroes <- 1-rowSums(weights)
  configCopy <- configs
  configCopy$zeroes <- 0
  
  stratRets <- Return.portfolio(R = configCopy, weights = weights)
  return(stratRets)  
}

The one thing different about this code is the way I initialize the return streams. It’s an ugly piece of work, but it takes all of the pairwise combinations (that is, 4 choose 2, or 4c2) along with a sequence going by 10% for the different security weights between the lower and upper bound (that is, if the lower bound is 40% and upper bound is 60%, the three weights will be 40-60, 50-50, and 60-40). So, in this case, there are 18 configurations. 4c2*3. Do note that this is not at all a framework that can be scaled up. That is, with 20 instruments, there will be 190 different combinations, and then anywhere between 3 to 11 (if going from 0-100) configurations for each combination. Obviously, not a pretty sight.

Beyond that, it’s the same refrain. Bind the returns together, compute an n-day rolling cumulative return (far faster my way than using the rollApply version of Return.annualized), divide it by the n-day rolling annualized standard deviation divided by the modified Sharpe F factor (1 gives you Sharpe ratio, 0 gives you pure returns, greater than 1 puts more of a focus on risk). Take the highest Sharpe ratio, allocate to that configuration, repeat.

So, how does this perform? Here’s a test script, using the same 73-day lookback with a modified Sharpe F of 2 that I’ve used in the previous Logical Invest strategies.

symbols <- c("TLT", "JNK", "PCY", "CWB", "VUSTX", "PRHYX", "RPIBX", "VCVSX")
suppressMessages(getSymbols(symbols, from="1995-01-01", src="yahoo"))
etfClose <- Return.calculate(cbind(Cl(TLT), Cl(JNK), Cl(PCY), Cl(CWB)))
etfAdj <- Return.calculate(cbind(Ad(TLT), Ad(JNK), Ad(PCY), Ad(CWB)))
mfClose <- Return.calculate(cbind(Cl(VUSTX), Cl(PRHYX), Cl(RPIBX), Cl(VCVSX)))
mfAdj <- Return.calculate(cbind(Ad(VUSTX), Ad(PRHYX), Ad(RPIBX), Ad(VCVSX)))
colnames(etfClose) <- colnames(etfAdj) <- c("TLT", "JNK", "PCY", "CWB")
colnames(mfClose) <- colnames(mfAdj) <- c("VUSTX", "PRHYX", "RPIBX", "VCVSX")

etfClose <- etfClose[!is.na(etfClose[,4]),]
etfAdj <- etfAdj[!is.na(etfAdj[,4]),]
mfClose <- mfClose[-1,]
mfAdj <- mfAdj[-1,]

etfAdjTest <- LogicInvestEBR(returns = etfAdj, lowerBound = .4, upperBound = .6,
                             period = 73, modSharpeF = 2)

etfClTest <- LogicInvestEBR(returns = etfClose, lowerBound = .4, upperBound = .6,
                             period = 73, modSharpeF = 2)

mfAdjTest <- LogicInvestEBR(returns = mfAdj, lowerBound = .4, upperBound = .6,
                            period = 73, modSharpeF = 2)

mfClTest <- LogicInvestEBR(returns = mfClose, lowerBound = .4, upperBound = .6,
                           period = 73, modSharpeF = 2)

fiveStats <- function(returns) {
  return(rbind(table.AnnualizedReturns(returns), 
               maxDrawdown(returns), CalmarRatio(returns)))
}

etfs <- cbind(etfAdjTest, etfClTest)
colnames(etfs) <- c("Adjusted ETFs", "Close ETFs")
charts.PerformanceSummary((etfs))

mutualFunds <- cbind(mfAdjTest, mfClTest)
colnames(mutualFunds) <- c("Adjusted MFs", "Close MFs")
charts.PerformanceSummary(mutualFunds)
chart.TimeSeries(log(cumprod(1+mutualFunds)), legend.loc="topleft")

fiveStats(etfs)
fiveStats(mutualFunds)

So, first, the results of the ETFs:

Equity curve:

Five statistics:

> fiveStats(etfs)
                          Adjusted ETFs Close ETFs
Annualized Return            0.12320000 0.08370000
Annualized Std Dev           0.06780000 0.06920000
Annualized Sharpe (Rf=0%)    1.81690000 1.20980000
Worst Drawdown               0.06913986 0.08038459
Calmar Ratio                 1.78158934 1.04078405

In other words, reinvesting dividends makes up about 50% of these returns.

Let’s look at the mutual funds. Note that these are for the sake of illustration only–you can’t trade out of mutual funds every month.

Equity curve:

Log scale:

Statistics:

                          Adjusted MFs Close MFs
Annualized Return           0.11450000 0.0284000
Annualized Std Dev          0.05700000 0.0627000
Annualized Sharpe (Rf=0%)   2.00900000 0.4532000
Worst Drawdown              0.09855271 0.2130904
Calmar Ratio                1.16217559 0.1332706

In this case, day and night, though how much of it is the data source may also be an issue. Yahoo isn’t the greatest when it comes to data, and I’m not sure how much the data quality deteriorates going back that far. However, the takeaway seems to be this: with bond strategies, dividends will need to be dealt with, and when considering returns data presented to you, keep in mind that those adjusted returns assume the investor stays on top of dividend maintenance. Fail to reinvest the dividends in a timely fashion, and, well, the gap can be quite large.

To put it into perspective, as I was writing this post, I wondered whether or not most of this was indeed due to dividends. Here’s a plot of the difference in returns between adjusted and close ETF returns.

chart.TimeSeries(etfAdj - etfClose, legend.loc="topleft", date.format="%Y-%m",
                 main = "Return differences adjusted vs. close ETFs")

With the resulting image:

While there may be some noise to the order of the negative fifth power on most days, there are clear spikes observable in the return differences. Those are dividends, and their compounding makes a sizable difference. In one case for CWB, the difference is particularly striking (Dec. 29, 2014). In fact, here’s a quick little analysis of the effect of the dividend effects.

dividends <- etfAdj - etfClose
divReturns <- list()
for(i in 1:ncol(dividends)) {
  diffStream <- dividends[,i]
  divPayments <- diffStream[diffStream >= 1e-3]
  divReturns[[i]] <- Return.annualized(divPayments)
}
divReturns <- do.call(cbind, divReturns)
divReturns

divReturns/Return.annualized(etfAdj)

And the result:

> divReturns
                         TLT        JNK        PCY        CWB
Annualized Return 0.03420959 0.08451723 0.05382363 0.05025999

> divReturns/Return.annualized(etfAdj)
                       TLT       JNK       PCY       CWB
Annualized Return 0.453966 0.6939243 0.5405922 0.3737499

In short, the effect of the dividend is massive. In some instances, such as with JNK, the dividend comprises more than 50% of the annualized returns for the security!

Basically, I’d like to hammer the point home one last time–backtests using adjusted data assume instantaneous maintenance of dividends. In order to achieve the optimistic returns seen in the backtests, these dividend payments must be reinvested ASAP. In short, this is the fine print on this strategy, and is a small, but critical detail that the SeekingAlpha article doesn’t mention. (Seriously, do a ctrl + F in your browser for the word “dividend”. It won’t come up in the article itself.) I wanted to make sure to add it.

One last thing: gaudy numbers when using monthly returns!

> fiveStats(apply.monthly(etfs, Return.cumulative))
                          Adjusted ETFs Close ETFs
Annualized Return            0.12150000   0.082500
Annualized Std Dev           0.06490000   0.067000
Annualized Sharpe (Rf=0%)    1.87170000   1.232100
Worst Drawdown               0.03671871   0.049627
Calmar Ratio                 3.30769620   1.662642

Look! A Calmar Ratio of 3.3, and a Sharpe near 2!*

*: Must manage dividends. Statistics reported are monthly.

Okay, in all fairness, this is a pretty solid strategy, once one commits to managing the dividends. I just felt that it should have been a topic made front and center considering its importance in this case, rather than simply swept under the “we use adjusted returns” rug, since in this instance, the effect of dividends is massive.

In conclusion, while I will more or less confirm the strategy’s actual risk/reward performance (unlike some other SeekingAlpha strategies I’ve backtested), which, in all honesty, I find really impressive, it comes with a caveat like the rest of them. However, the caveat of “be detail-oriented/meticulous/paranoid and reinvest those dividends!” in my opinion is a caveat that’s a lot easier to live with than 30%+ drawdowns that were found lurking in other SeekingAlpha strategies. So for those that can stay on top of those dividends (whether manually, or with machine execution), here you go. I’m basically confirming the performance of Logical Invest’s strategy, but just belaboring one important detail.

Thanks for reading.

NOTE: I am a freelance consultant in quantitative analysis on topics related to this blog. If you have contract or full time roles available for proprietary research that could benefit from my skills, please contact me through my LinkedIn here.

The Logical Invest “Hell On Fire” Replication Attempt

This post is about my replication attempt of Logical Invest’s “Hell On Fire” strategy — which is its Universal Investment Strategy using SPXL and TMF (aka the 3x leveraged ETFs). I don’t match their results, but I do come close.

It seems that some people at Logical Invest have caught whiff of some of the work I did in replicating Harry Long’s ideas. First off, for the record, I’ve actually done some work with Harry Long in private, and the strategies we’ve worked on together are definitely better than the strategies he has shared for free, so if you are an institution hoping to vet his track record, I wouldn’t judge it by the very much incomplete frameworks he posts for free.

This post’s strategy is the Logical Invest Universal Investment Strategy leveraged up three times over. Here’s the link to their newest post. Also, I’m happy to see that they think positively of my work.

In any case, my results are worse than those on Logical Invest’s, so if anyone sees a reason for the discrepancy, please let me know.

Here’s the code for the backtest–most of it is old, from my first time analyzing Logical Invest’s strategy.

LogicalInvestUIS <- function(returns, period = 63, modSharpeF = 2.8) {
  returns[is.na(returns)] <- 0 #impute any NAs to zero
  configs <- list()
  for(i in 1:11) {
    weightFirst <- (i-1)*.1
    weightSecond <- 1-weightFirst
    config <- Return.portfolio(R = returns, weights=c(weightFirst, weightSecond), rebalance_on = "months")
    configs[[i]] <- config
  }
  configs <- do.call(cbind, configs)
  cumRets <- cumprod(1+configs)
  
  #rolling cumulative 
  rollAnnRets <- (cumRets/lag(cumRets, period))^(252/period) - 1
  rollingSD <- sapply(X = configs, runSD, n=period)*sqrt(252)
  
  modSharpe <- rollAnnRets/(rollingSD ^ modSharpeF)
  monthlyModSharpe <- modSharpe[endpoints(modSharpe, on="months"),]
  
  findMax <- function(data) {
    return(data==max(data))
  }
  
  #configs$zeroes <- 0 #zeroes for initial periods during calibration
  weights <- t(apply(monthlyModSharpe, 1, findMax))
  weights <- weights*1
  weights <- xts(weights, order.by=as.Date(rownames(weights)))
  weights[is.na(weights)] <- 0
  weights$zeroes <- 1-rowSums(weights)
  configCopy <- configs
  configCopy$zeroes <- 0
  
  stratRets <- Return.portfolio(R = configCopy, weights = weights)
  
  weightFirst <- apply(monthlyModSharpe, 1, which.max)
  weightFirst <- do.call(rbind, weightFirst)
  weightFirst <- (weightFirst-1)*.1
  align <- cbind(weightFirst, stratRets)
  align <- na.locf(align)
  chart.TimeSeries(align[,1], date.format="%Y", ylab=paste("Weight", colnames(returns)[1]), 
                                                           main=paste("Weight", colnames(returns)[1]))
  
  return(stratRets)
}

In this case, rather than steps of 5% weights, I used 10% weights after looking at the Logical Invest charts more closely.

Now, let’s look at the instruments.

getSymbols("SPY", from="1990-01-01")

getSymbols("TMF", from="1990-01-01")
TMFrets <- Return.calculate(Ad(TMF))
getSymbols("TLT", from="1990-01-01")
TLTrets <- Return.calculate(Ad(TLT))
tmf3TLT <- merge(TMFrets, 3*TLTrets, join='inner')
charts.PerformanceSummary(tmf3TLT)
Return.annualized(tmf3TLT[,2]-tmf3TLT[,1])
discrepancy <- as.numeric(Return.annualized(tmf3TLT[,2]-tmf3TLT[,1]))
tmf3TLT[,2] <- tmf3TLT[,2] - ((1+discrepancy)^(1/252)-1)
modifiedTLT <- 3*TLTrets - ((1+discrepancy)^(1/252)-1)

rets <- merge(3*Return.calculate(Ad(SPY)), modifiedTLT, join='inner')
colnames(rets) <- gsub("\\.[A-z]*", "", colnames(rets))

leveragedReturns <- rets
colnames(leveragedReturns) <- paste("Leveraged", colnames(leveragedReturns), sep="_")
leveragedReturns <- leveragedReturns[-1,]

Again, more of the same that I did from my work analyzing Harry Long’s strategies to get a longer backtest of SPXL and TMF (aka leveraged SPY and TLT).

Now, let’s look at some configurations.


hof <- LogicalInvestUIS(returns = leveragedReturns, period = 63, modSharpeF = 2.8)
hof2 <- LogicalInvestUIS(returns = leveragedReturns, period = 73, modSharpeF = 3)
hof3 <- LogicalInvestUIS(returns = leveragedReturns, period = 84, modSharpeF = 4)
hof4 <- LogicalInvestUIS(returns = leveragedReturns, period = 42, modSharpeF = 1.5)
hof5 <- LogicalInvestUIS(returns = leveragedReturns, period = 63, modSharpeF = 6)
hof6 <- LogicalInvestUIS(returns = leveragedReturns, period = 73, modSharpeF = 2)

hofComparisons <- cbind(hof, hof2, hof3, hof4, hof5, hof6)
colnames(hofComparisons) <- c("d63_F2.8", "d73_F3", "d84_F4", "d42_F1.5", "d63_F6", "d73_F2")
rbind(table.AnnualizedReturns(hofComparisons), maxDrawdown(hofComparisons), CalmarRatio(hofComparisons))

With the following statistics:

> rbind(table.AnnualizedReturns(hofComparisons), maxDrawdown(hofComparisons), CalmarRatio(hofComparisons))
                           d63_F2.8    d73_F3    d84_F4  d42_F1.5    d63_F6    d73_F2
Annualized Return         0.3777000 0.3684000 0.2854000 0.1849000 0.3718000 0.3830000
Annualized Std Dev        0.3406000 0.3103000 0.3010000 0.4032000 0.3155000 0.3383000
Annualized Sharpe (Rf=0%) 1.1091000 1.1872000 0.9483000 0.4585000 1.1785000 1.1323000
Worst Drawdown            0.5619769 0.4675397 0.4882101 0.7274609 0.5757738 0.4529908
Calmar Ratio              0.6721751 0.7879956 0.5845827 0.2541127 0.6457823 0.8455274

It seems that the original 73 day lookback, sharpe F of 2 had the best performance.

Here are the equity curves (log scale because leveraged or volatility strategies look silly at regular scale):

chart.TimeSeries(log(cumprod(1+hofComparisons)), legend.loc="topleft", date.format="%Y",
                 main="Hell On Fire Comparisons", ylab="Value of $1", yaxis = FALSE)
axis(side=2, at=c(0, 1, 2, 3, 4), label=paste0("$", round(exp(c(0, 1, 2, 3, 4)))), las = 1)

In short, sort of upwards from 2002 to the crisis, where all the strategies take a dip, and then continue steadily upwards.

Here are the drawdowns:

dds <- PerformanceAnalytics:::Drawdowns(hofComparisons)
chart.TimeSeries(dds, legend.loc="bottomright", date.format="%Y", main="Drawdowns Hell On Fire Variants", 
                 yaxis=FALSE, ylab="Drawdown", auto.grid=FALSE)
axis(side=2, at=seq(from=0, to=-.7, by = -.1), label=paste0(seq(from=0, to=-.7, by = -.1)*100, "%"), las = 1)

Basically, some regular bumps along the road given the CAGRs (that is, if you’re going to leverage something that has an 8% drawdown on the occasion three times over, it’s going to have a 24% drawdown on those same occasions, if not more), and the massive hit in the crisis when bonds take a hit, and on we go.

In short, this strategy is basically the same as the original strategy, just leveraged up, so for those with the stomach for it, there you go. Of course, Logical Invest is leaving off some details, since I’m not getting a perfect replica. Namely, their returns seem slightly higher, and their drawdowns slightly lower. I suppose that’s par for the course when selling subscriptions and newsletters.

One last thing, which I think people should be aware of–when people report statistics on their strategies, make sure to ask the question as to which frequency. Because here’s a quick little modification, going from daily returns to monthly returns:

> betterStatistics <- apply.monthly(hofComparisons, Return.cumulative)
> rbind(table.AnnualizedReturns(betterStatistics), maxDrawdown(betterStatistics), CalmarRatio(betterStatistics))
                           d63_F2.8    d73_F3    d84_F4  d42_F1.5    d63_F6   d73_F2
Annualized Return         0.3719000 0.3627000 0.2811000 0.1822000 0.3661000 0.377100
Annualized Std Dev        0.3461000 0.3014000 0.2914000 0.3566000 0.3159000 0.336700
Annualized Sharpe (Rf=0%) 1.0746000 1.2036000 0.9646000 0.5109000 1.1589000 1.119900
Worst Drawdown            0.4323102 0.3297927 0.4100792 0.6377512 0.4636949 0.311480
Calmar Ratio              0.8602366 1.0998551 0.6855148 0.2856723 0.7894636 1.210563

While the Sharpe ratios don’t improve too much, the Calmars (aka the return to drawdown) statistics increase dramatically. EG, imagine a month in which there’s a 40% drawdown, but it ends at a new equity high. A monthly return series will sweep that under the rug, or, for my fellow Jewish readers, pass over it. So, be wary.

Thanks for reading.

NOTE: I am a freelance consultant in quantitative analysis on topics related to this blog. If you have contract or full time roles available for proprietary research that could benefit from my skills, please contact me through my LinkedIn here.

Rolling Sharpe Ratios

Similar to my rolling cumulative returns from last post, in this post, I will present a way to compute and plot rolling Sharpe ratios. Also, I edited the code to compute rolling returns to be more general with an option to annualize the returns, which is necessary for computing Sharpe ratios.

In any case, let’s look at some more code. First off, the new running cumulative returns:

"runCumRets" <- function(R, n = 252, annualized = FALSE, scale = NA) {
  R <- na.omit(R)
  if (is.na(scale)) {
    freq = periodicity(R)
    switch(freq$scale, minute = {
      stop("Data periodicity too high")
    }, hourly = {
      stop("Data periodicity too high")
    }, daily = {
      scale = 252
    }, weekly = {
      scale = 52
    }, monthly = {
      scale = 12
    }, quarterly = {
      scale = 4
    }, yearly = {
      scale = 1
    })
  }
  cumRets <- cumprod(1+R)
  if(annualized) {
    rollingCumRets <- (cumRets/lag(cumRets, k = n))^(scale/n) - 1 
  } else {
    rollingCumRets <- cumRets/lag(cumRets, k = n) - 1
  }
  return(rollingCumRets)
}

Essentially, a more general variant, with an option to annualize returns over longer (or shorter) periods of time. This is necessary for the following running Sharpe ratio code:

"runSharpe" <- function(R, n = 252, scale = NA, volFactor = 1) {
  if (is.na(scale)) {
    freq = periodicity(R)
    switch(freq$scale, minute = {
      stop("Data periodicity too high")
    }, hourly = {
      stop("Data periodicity too high")
    }, daily = {
      scale = 252
    }, weekly = {
      scale = 52
    }, monthly = {
      scale = 12
    }, quarterly = {
      scale = 4
    }, yearly = {
      scale = 1
    })
  }
  rollingAnnRets <- runCumRets(R, n = n, annualized = TRUE)
  rollingAnnSD <- sapply(R, runSD, n = n)*sqrt(scale)
  rollingSharpe <- rollingAnnRets/rollingAnnSD ^ volFactor
  return(rollingSharpe)
}

The one little innovation I added is the vol factor parameter, allowing users to place more or less emphasis on the volatility. While changing it from 1 will make the calculation different from the standard Sharpe ratio, I added this functionality due to the Logical Invest strategy I did in the past, and thought that I might as well have this function run double duty.

And of course, this comes with a plotting function.

"plotRunSharpe" <- function(R, n = 252, ...) {
  sharpes <- runSharpe(R = R, n = n)
  sharpes <- sharpes[!is.na(sharpes[,1]),]
  chart.TimeSeries(sharpes, legend.loc="topleft", main=paste("Rolling", n, "period Sharpe Ratio"),
                   date.format="%Y", yaxis=FALSE, ylab="Sharpe Ratio", auto.grid=FALSE, ...)
  meltedSharpes <- do.call(c, data.frame(sharpes))
  axisLabels <- pretty(meltedSharpes, n = 10)
  axisLabels <- unique(round(axisLabels, 1))
  axisLabels <- axisLabels[axisLabels > min(axisLabels) & axisLabels < max(axisLabels)]
  axis(side=2, at=axisLabels, label=axisLabels, las=1)
}

So what does this look like, in the case of a 252-day FAA vs. SPY test?

Like this:

par(mfrow = c (2,1))
plotRunSharpe(comparison, n=252)
plotRunSharpe(comparison, n=756)

Essentially, similar to what we saw last time–only having poor performance at the height of the crisis and for a much smaller amount of time than SPY, and always possessing a three-year solid performance. One thing to note about the Sharpe ratio is that the interpretation in the presence of negative returns doesn’t make too much sense. That is, when returns are negative, having a small variance actually works against the Sharpe ratio, so a strategy that may have lost only 10% while SPY lost 50% might look every bit as bad on the Sharpe Ratio plots due to the nature of a small standard deviation punishing smaller negative returns as much as it benefits smaller positive returns.

In conclusion, this is a fast way of computing and plotting a running Sharpe ratio, and this function doubles up as a utility for use with strategies such as the Universal Investment Strategy from Logical Invest.

Thanks for reading.

NOTE: I am a freelance consultant in quantitative analysis on topics related to this blog. If you have contract or full time roles available for proprietary research that could benefit from my skills, please contact me through my LinkedIn here.

Introduction to my New IKReporting Package

This post will introduce my up and coming IKReporting package, and functions that compute and plot rolling returns, which are useful to compare recent performance, since simply looking at two complete equity curves may induce sample bias (EG SPY in 2008), which may not reflect the state of the markets going forward.

In any case, the motivation for this package was brought about by one of my readers, who has reminded me in the past of the demand for the in-the-ditches work of pretty performance reports. This package aims to make creating such thing as painless as possible, and I will be updating it rapidly in the near future.

The strategy in use for this post will be Flexible Asset Allocation from my IKTrading package, in order to celebrate the R/Finance lightning talk I’m approved for on FAA, and it’ll be compared to SPY.

Here’s the code:

require(IKTrading)
require(quantmod)
require(PerformanceAnalytics)

options("getSymbols.warning4.0"=FALSE)

symbols <- c("XLB", #SPDR Materials sector
             "XLE", #SPDR Energy sector
             "XLF", #SPDR Financial sector
             "XLP", #SPDR Consumer staples sector
             "XLI", #SPDR Industrial sector
             "XLU", #SPDR Utilities sector
             "XLV", #SPDR Healthcare sector
             "XLK", #SPDR Tech sector
             "XLY", #SPDR Consumer discretionary sector
             "RWR", #SPDR Dow Jones REIT ETF

             "EWJ", #iShares Japan
             "EWG", #iShares Germany
             "EWU", #iShares UK
             "EWC", #iShares Canada
             "EWY", #iShares South Korea
             "EWA", #iShares Australia
             "EWH", #iShares Hong Kong
             "EWS", #iShares Singapore
             "IYZ", #iShares U.S. Telecom
             "EZU", #iShares MSCI EMU ETF
             "IYR", #iShares U.S. Real Estate
             "EWT", #iShares Taiwan
             "EWZ", #iShares Brazil
             "EFA", #iShares EAFE
             "IGE", #iShares North American Natural Resources
             "EPP", #iShares Pacific Ex Japan
             "LQD", #iShares Investment Grade Corporate Bonds
             "SHY", #iShares 1-3 year TBonds
             "IEF", #iShares 3-7 year TBonds
             "TLT" #iShares 20+ year Bonds
)

from="2003-01-01"

#SPDR ETFs first, iShares ETFs afterwards
if(!"XLB" %in% ls()) {
  suppressMessages(getSymbols(symbols, from="2003-01-01", src="yahoo", adjust=TRUE))
}

prices <- list()
for(i in 1:length(symbols)) {
  prices[[i]] <- Cl(get(symbols[i]))
}
prices <- do.call(cbind, prices)
colnames(prices) <- gsub("\\.[A-z]*", "", colnames(prices))

faa <- FAA(prices = prices, riskFreeName = "SHY", bestN = 6, stepCorRank = TRUE)

getSymbols("SPY", from="1990-01-01")

comparison <- merge(faa, Return.calculate(Cl(SPY)), join='inner')
colnames(comparison) <- c("FAA", "SPY")

And now here’s where the new code comes in:

This is a simple function for computing running cumulative returns of a fixed window. It’s a quick three-liner function that can compute the cumulative returns over any fixed period near-instantaneously.

"runCumRets" <- function(R, n = 252) {
  cumRets <- cumprod(1+R)
  rollingCumRets <- cumRets/lag(cumRets, k = n) - 1
  return(rollingCumRets)
}

So how does this get interesting? Well, with some plotting, of course.

Here’s a function to create a plot of these rolling returns.

"plotCumRets" <- function(R, n = 252, ...) {
  cumRets <- runCumRets(R = R, n = n)
  cumRets <- cumRets[!is.na(cumRets[,1]),]
  chart.TimeSeries(cumRets, legend.loc="topleft", main=paste(n, "day rolling cumulative return"),
                   date.format="%Y", yaxis=FALSE, ylab="Return", auto.grid=FALSE)
  
  meltedCumRets <- do.call(c, data.frame(cumRets))
  axisLabels <- pretty(meltedCumRets, n = 10)
  axisLabels <- round(axisLabels, 1)
  axisLabels <- axisLabels[axisLabels > min(axisLabels) & axisLabels < max(axisLabels)]
  axis(side=2, at=axisLabels, label=paste(axisLabels*100, "%"), las=1)
}

While the computation is done in the first line, the rest of the code is simply to make a prettier plot.

Here’s what the 252-day rolling return comparison looks like.

require(IKReporting)
plotCumRets(comparison)

So here’s the interpretation: assuming that there isn’t too much return degradation in the implementation of the FAA strategy, it essentially delivers most of the upside of SPY while doing a much better job protecting the investor when things hit the fan. Recently, however, seeing as to how the stock market has been on a roar, there’s a slight bit of underperformance over the past several years.

However, let’s look at a longer time horizon — the cumulative return over 756 days.

plotCumRets(comparison, n = 756)

With the following result:

This offers a much clearer picture–essentially, what this states is that over any 756-day period, the strategy has not lost money, ever, unlike SPY, which would have wiped out three years of gains (and then some) at the height of the crisis. More recently, as the stock market is in yet another run-up, there has been some short-term (well, if 756 days can be called short-term) underperformance, namely due to SPY having some historical upward mobility.

On another unrelated topic, some of you (perhaps from Seeking Alpha) may have seen the following image floating around:

This is a strategy I have collaborated with Harry Long from Seeking Alpha on. While I’m under NDA and am not allowed to discuss the exact rules of this particular strategy, I can act as a liaison for those that wish to become a client of ZOMMA, LLC. While the price point is out of the reach of ordinary retail investors (the price point is into the six figures), institutions that are considering licensing one of these indices can begin by sending me an email at ilya.kipnis@gmail.com. I can also set up a phone call.

Thanks for reading.

NOTE: I am a freelance consultant in quantitative analysis on topics related to this blog. If you have contract or full time roles available for proprietary research that could benefit from my skills, please contact me through my LinkedIn here.

The Downside of Rankings-Based Strategies

This post will demonstrate a downside to rankings-based strategies, particularly when using data of a questionable quality (which, unless one pays multiple thousands of dollars per month for data, most likely is of questionable quality). Essentially, by making one small change to the way the strategy filters, it introduces a massive performance drop in terms of drawdown. This exercise effectively demonstrates a different possible way of throwing a curve-ball at ranking strategies to test for robustness.

Recently, a discussion came up between myself, Terry Doherty, Cliff Smith, and some others on Seeking Alpha regarding what happened when I substituted the 63-day SMA for the three month SMA in Cliff Smith’s QTS strategy (quarterly tactical strategy…strategy).

Essentially, by simply substituting a 63-day SMA (that is, using daily data instead of monthly) for a 3-month SMA, the results were drastically affected.

Here’s the new QTS code, now in a function.

qts <- function(prices, nShort = 20, nLong = 105, nMonthSMA = 3, nDaySMA = 63, wRankShort=1, wRankLong=1.01, 
                movAvgType = c("monthly", "daily"), cashAsset="VUSTX", returnNames = FALSE) {
  cashCol <- grep(cashAsset, colnames(prices))
  
  #start our data off on the security with the least data (VGSIX in this case)
  prices <- prices[!is.na(prices[,7]),] 
  
  #cash is not a formal asset in our ranking
  cashPrices <- prices[, cashCol]
  prices <- prices[, -cashCol]
  
  #compute momentums
  rocShort <- prices/lag(prices, nShort) - 1
  rocLong <- prices/lag(prices, nLong) - 1
  
  #take the endpoints of quarter start/end
  quarterlyEps <- endpoints(prices, on="quarters")
  monthlyEps <- endpoints(prices, on = "months")
  
  #take the prices at quarterly endpoints
  quarterlyPrices <- prices[quarterlyEps,]
  
  #short momentum at quarterly endpoints (20 day)
  rocShortQtrs <- rocShort[quarterlyEps,]
  
  #long momentum at quarterly endpoints (105 day)
  rocLongQtrs <- rocLong[quarterlyEps,]
  
  #rank short momentum, best highest rank
  rocSrank <- t(apply(rocShortQtrs, 1, rank))
  
  #rank long momentum, best highest rank
  rocLrank <- t(apply(rocLongQtrs, 1, rank))
  
  #total rank, long slightly higher than short, sum them
  totalRank <- wRankLong * rocLrank + wRankShort * rocSrank 
  
  #function that takes 100% position in highest ranked security
  maxRank <- function(rankRow) {
    return(rankRow==max(rankRow))
  }
  
  #apply above function to our quarterly ranks every quarter
  rankPos <- t(apply(totalRank, 1, maxRank))
  
  #SMA of securities, only use monthly endpoints
  #subset to quarters
  #then filter
  movAvgType = movAvgType[1]
  if(movAvgType=="monthly") {
    monthlyPrices <- prices[monthlyEps,]
    monthlySMAs <- xts(apply(monthlyPrices, 2, SMA, n=nMonthSMA), order.by=index(monthlyPrices))
    quarterlySMAs <- monthlySMAs[index(quarterlyPrices),]
    smaFilter <- quarterlyPrices > quarterlySMAs
  } else if (movAvgType=="daily") {
    smas <- xts(apply(prices, 2, SMA, n=nDaySMA), order.by=index(prices))
    quarterlySMAs <- smas[index(quarterlyPrices),]
    smaFilter <- quarterlyPrices > quarterlySMAs
  } else {
    stop("invalid moving average type")
  }
  
  finalPos <- rankPos*smaFilter
  finalPos <- finalPos[!is.na(rocLongQtrs[,1]),]
  cash <- xts(1-rowSums(finalPos), order.by=index(finalPos))
  finalPos <- merge(finalPos, cash, join='inner')
  
  prices <- merge(prices, cashPrices, join='inner')
  returns <- Return.calculate(prices)
  stratRets <- Return.portfolio(returns, finalPos)
  
  if(returnNames) {
    findNames <- function(pos) {
      return(names(pos[pos==1]))
    }
    tmp <- apply(finalPos, 1, findNames)
    assetNames <- xts(tmp, order.by=as.Date(names(tmp)))
    return(list(assetNames, stratRets))
  }
  return(stratRets)
}

The one change I made is this:

  movAvgType = movAvgType[1]
  if(movAvgType=="monthly") {
    monthlyPrices <- prices[monthlyEps,]
    monthlySMAs <- xts(apply(monthlyPrices, 2, SMA, n=nMonthSMA), order.by=index(monthlyPrices))
    quarterlySMAs <- monthlySMAs[index(quarterlyPrices),]
    smaFilter <- quarterlyPrices > quarterlySMAs
  } else if (movAvgType=="daily") {
    smas <- xts(apply(prices, 2, SMA, n=nDaySMA), order.by=index(prices))
    quarterlySMAs <- smas[index(quarterlyPrices),]
    smaFilter <- quarterlyPrices > quarterlySMAs
  } else {
    stop("invalid moving average type")
  }

In essence, it allows the function to use either a monthly-calculated moving average, or a daily, which is then subset to the quarterly frequency of the rest of the data.

(I also allow the function to return the names of the selected securities.)

So now we can do two tests:

1) The initial parameter settings (20-day short-term momentum, 105-day long-term momentum, equal weigh their ranks (tiebreaker to the long-term), and use a 3-month SMA to filter)
2) The same exact parameter settings, except a 63-day SMA for the filter.

Here’s the code to do that.

#get our data from yahoo, use adjusted prices
symbols <- c("NAESX", #small cap
             "PREMX", #emerging bond
             "VEIEX", #emerging markets
             "VFICX", #intermediate investment grade
             "VFIIX", #GNMA mortgage
             "VFINX", #S&P 500 index
             "VGSIX", #MSCI REIT
             "VGTSX", #total intl stock idx
             "VUSTX") #long term treasury (cash)

getSymbols(symbols, from="1990-01-01")
prices <- list()
for(i in 1:length(symbols)) {
  prices[[i]] <- Ad(get(symbols[i]))  
}
prices <- do.call(cbind, prices)
colnames(prices) <- gsub("\\.[A-z]*", "", colnames(prices))

monthlySMAqts <- qts(prices, returnNames=TRUE)
dailySMAqts <- qts(prices, wRankShort=.95, wRankLong=1.05, movAvgType = "daily", returnNames=TRUE)

retsComparison <- cbind(monthlySMAqts[[2]], dailySMAqts[[2]])
colnames(retsComparison) <- c("monthly SMA qts", "daily SMA qts")
retsComparison <- retsComparison["2003::"]
charts.PerformanceSummary(retsComparison["2003::"])
rbind(table.AnnualizedReturns(retsComparison["2003::"]), maxDrawdown(retsComparison["2003::"]))

And here are the results:

Statistics:

                          monthly SMA qts daily SMA qts
Annualized Return               0.2745000     0.2114000
Annualized Std Dev              0.1725000     0.1914000
Annualized Sharpe (Rf=0%)       1.5915000     1.1043000
Worst Drawdown                  0.1911616     0.3328411

With the corresponding equity curves:

Here are the several instances in which the selections do not match thanks to the filters:

selectedNames <- cbind(monthlySMAqts[[1]], dailySMAqts[[1]])
colnames(selectedNames) <- c("Monthly SMA Filter", "Daily SMA Filter")
differentSelections <- selectedNames[selectedNames[,1]!=selectedNames[,2],]

With the results:

           Monthly SMA Filter Daily SMA Filter
1997-03-31 "VGSIX"            "cash"          
2007-12-31 "cash"             "PREMX"         
2008-06-30 "cash"             "VFIIX"         
2008-12-31 "cash"             "NAESX"         
2011-06-30 "cash"             "NAESX"  

Now, of course, many can make the arguments that Yahoo’s data is junk, my backtest doesn’t reflect reality, etc., which would essentially miss the point: this data here, while not a perfect realization of the reality of Planet Earth, may as well have been valid (you know, like all the academics, who use various simulation techniques to synthesize more data or explore other scenarios?). All I did here was change the filter to something logically comparable (that is, computing the moving average filter on a different time-scale, which does not in any way change the investment logic). From 2003 onward, this change only affected the strategy in four places. However, those instances were enough to create some noticeable changes (for the worse) in the strategy’s performance. Essentially, the downside of rankings-based strategies are when the overall number of selected instruments (in this case, ONE!) is small, a few small changes in parameters, data, etc. can lead to drastically different results.

As I write this, Cliff Smith already has ideas as to how to counteract this phenomenon. However, unto my experience, once a strategy starts getting into “how do we smooth out that one bump on the equity curve” territory, I think it’s time to go back and re-examine the strategy altogether. In my opinion, while the idea of momentum is of course, sound, with a great deal of literature devoted to it, the idea of selecting just one instrument at a time as the be-all-end-all strategy does not sit well with me. However, to me, QTS nevertheless presents an interesting framework for analyzing small subgroups of securities, and using it as one layer of an overarching strategy framework, such that the return streams are sub-strategies, instead of raw instruments.

Thanks for reading.

NOTE: I am a freelance consultant in quantitative analysis on topics related to this blog. If you have contract or full time roles available for proprietary research that could benefit from my skills, please contact me through my LinkedIn here.

The Logical-Invest “Universal Investment Strategy”–A Walk Forward Process on SPY and TLT

I’m sure we’ve all heard about diversified stock and bond portfolios. In its simplest, most diluted form, it can be comprised of the SPY and TLT etfs. The concept introduced by Logical Invest, in a Seeking Alpha article written by Frank Grossman (also see link here), essentially uses a walk-forward methodology of maximizing a modified Sharpe ratio, biased heavily in favor of the volatility rather than the returns. That is, it uses a 72-day moving window to maximize total returns between different weighting configurations of a SPY-TLT mix over the standard deviation raised to the power of 5/2. To put it into perspective, at a power of 1, this is the basic Sharpe ratio, and at a power of 0, just a momentum maximization algorithm.

The process for this strategy is simple: rebalance every month on some multiple of 5% between SPY and TLT that previously maximized the following quantity (returns/vol^2.5 on a 72-day window).

Here’s the code for obtaining the data and computing the necessary quantities:

require(quantmod)
require(PerformanceAnalytics)
getSymbols(c("SPY", "TLT"), from="1990-01-01")
returns <- merge(Return.calculate(Ad(SPY)), Return.calculate(Ad(TLT)), join='inner')
returns <- returns[-1,]
configs <- list()
for(i in 1:21) {
  weightSPY <- (i-1)*.05
  weightTLT <- 1-weightSPY
  config <- Return.portfolio(R = returns, weights=c(weightSPY, weightTLT), rebalance_on = "months")
  configs[[i]] <- config
}
configs <- do.call(cbind, configs)
cumRets <- cumprod(1+configs)
period <- 72

roll72CumAnn <- (cumRets/lag(cumRets, period))^(252/period) - 1
roll72SD <- sapply(X = configs, runSD, n=period)*sqrt(252)

Next, the code for creating the weights:

sd_f_factor <- 2.5
modSharpe <- roll72CumAnn/roll72SD^sd_f_factor
monthlyModSharpe <- modSharpe[endpoints(modSharpe, on="months"),]

findMax <- function(data) {
  return(data==max(data))
}

weights <- t(apply(monthlyModSharpe, 1, findMax))
weights <- weights*1
weights <- xts(weights, order.by=as.Date(rownames(weights)))
weights[is.na(weights)] <- 0
weights$zeroes <- 1-rowSums(weights)
configs$zeroes <- 0

That is, simply take the setting that maximizes the monthly modified Sharpe Ratio calculation at each rebalancing date (the end of every month).

Next, here’s the performance:

stratRets <- Return.portfolio(R = configs, weights = weights)
rbind(table.AnnualizedReturns(stratRets), maxDrawdown(stratRets))
charts.PerformanceSummary(stratRets)

Which gives the results:

> rbind(table.AnnualizedReturns(stratRets), maxDrawdown(stratRets))
                          portfolio.returns
Annualized Return                 0.1317000
Annualized Std Dev                0.0990000
Annualized Sharpe (Rf=0%)         1.3297000
Worst Drawdown                    0.1683851

With the following equity curve:

Not perfect, but how does it compare to the ingredients?

Let’s take a look:

stratAndComponents <- merge(returns, stratRets, join='inner')
charts.PerformanceSummary(stratAndComponents)
rbind(table.AnnualizedReturns(stratAndComponents), maxDrawdown(stratAndComponents))
apply.yearly(stratAndComponents, Return.cumulative)

Here are the usual statistics:

> rbind(table.AnnualizedReturns(stratAndComponents), maxDrawdown(stratAndComponents))
                          SPY.Adjusted TLT.Adjusted portfolio.returns
Annualized Return            0.0907000    0.0783000         0.1317000
Annualized Std Dev           0.1981000    0.1381000         0.0990000
Annualized Sharpe (Rf=0%)    0.4579000    0.5669000         1.3297000
Worst Drawdown               0.5518552    0.2659029         0.1683851

In short, it seems the strategy performs far better than either of the ingredients. Let’s see if the equity curve comparison reflects this.

Indeed, it does. While it does indeed have the drawdown in the crisis, both instruments were in drawdown at the time, so it appears that the strategy made the best of a bad situation.

Here are the annual returns:

> apply.yearly(stratAndComponents, Return.cumulative)
           SPY.Adjusted TLT.Adjusted portfolio.returns
2002-12-31  -0.02054891  0.110907611        0.01131366
2003-12-31   0.28179336  0.015936985        0.12566042
2004-12-31   0.10695067  0.087089794        0.09724221
2005-12-30   0.04830869  0.085918063        0.10525398
2006-12-29   0.15843880  0.007178861        0.05294557
2007-12-31   0.05145526  0.102972399        0.06230742
2008-12-31  -0.36794099  0.339612265        0.19590423
2009-12-31   0.26352114 -0.218105306        0.18826736
2010-12-31   0.15056113  0.090181150        0.16436950
2011-12-30   0.01890375  0.339915713        0.24562838
2012-12-31   0.15994578  0.024083393        0.06051237
2013-12-31   0.32303535 -0.133818884        0.13760060
2014-12-31   0.13463980  0.273123290        0.19637382
2015-02-20   0.02773183  0.006922893        0.02788726

2002 was an incomplete year. However, what’s interesting here is that on a whole, while the strategy rarely if ever does as well as the better of the two instruments, it always outperforms the worse of the two instruments–and not only that, but it has delivered a positive performance in every year of the backtest–even when one instrument or the other was taking serious blows to performance, such as SPY in 2008, and TLT in 2009 and 2013.

For the record, here is the weight of SPY in the strategy.

weightSPY <- apply(monthlyModSharpe, 1, which.max)
weightSPY <- do.call(rbind, weightSPY)
weightSPY <- (weightSPY-1)*.05
align <- cbind(weightSPY, stratRets)
align <- na.locf(align)
chart.TimeSeries(align[,1], date.format="%Y", ylab="Weight SPY", main="Weight of SPY in SPY-TLT pair")

Now while this may serve as a standalone strategy for some people, the takeaway in my opinion from this is that dynamically re-weighting two return streams that share a negative correlation can lead to some very strong results compared to the ingredients from which they were formed. Furthermore, rather than simply rely on one number to summarize a relationship between two instruments, the approach that Frank Grossman took to actually model the combined returns was one I find interesting, and undoubtedly has applications as a general walk-forward process.

Thanks for reading.

NOTE: I am a freelance consultant in quantitative analysis on topics related to this blog. If you have contract or full time roles available for proprietary research that could benefit from my skills, please contact me through my LinkedIn here.