A Python Investigation of a New Proposed Short Vol ETF–SVIX

This post will be about analyzing SVIX–a proposed new short vol ETF that aims to offer the same short vol exposure as XIV used to–without the downside of, well, blowing up in 20 minutes due to positive feedback loops. As I’m currently enrolled in a Python bootcamp, this was one of my capstone projects on A/B testing, so, all code will be in Python (again).

So, first off, with those not familiar, there was an article about this proposed ETF published about a month ago. You can read it here. The long story short is that this ETF is created by one Stuart Barton, who also manages InvestInVol. From conversations with Stuart, I can vouch for the fact that he strikes me as very knowledgeable in the vol space, and, if I recall correctly, was one of the individuals that worked on the original VXX ETF at Barclay’s. So when it comes to creating a newer, safer vehicle for trading short-term short vol, I’d venture to think he’s about as good as any.

In any case, here’s a link to my Python notebook, ahead of time, which I will now discuss here, on this post.

So first off, we’ll start by getting the data, and in case anyone forgot what XIV did in 2018, here’s a couple of plots.

import numpy as np
import pandas as pd
import scipy.stats as stats
import matplotlib.pyplot as plt
from pandas_datareader import data
import datetime as dt
from datetime import datetime

# get XIV from a public dropbox -- XIV had a termination event Feb. 5 2018, so this is archived data.

xiv = pd.read_csv("https://dl.dropboxusercontent.com/s/jk6der1s5lxtcfy/XIVlong.TXT", parse_dates=True, index_col=0)

# get SVXY data from Yahoo finance
svxy = data.DataReader('SVXY', 'yahoo', '2016-01-01')
#yahoo_xiv = data.DataReader('XIV', 'yahoo', '1990-01-01')

# yahoo no longer carries XIV because the instrument blew up, need to find it from historical sources
xiv_returns = xiv['Close'].pct_change()
svxy_returns = svxy['Close'].pct_change()

xiv['Close'].plot(figsize=(20,10))
plt.show()
xiv['2016':'2018']['Close'].plot(figsize=(20,10))

Yes, for those new to the blog, that event actually happened, and in the span of 20 minutes (my trading system got to the sideline about a week before, and even had I been in–which I wasn’t–I would have been in ZIV), during which time XIV blew up in after-hours trading. Immediately following, SVXY (which survived), deleveraged to a 50% exposure.

In any case, here’s the code to get SVIX data from my dropbox, essentially to the end of 2019, after I manually did some work on it because the CBOE has it in a messy format, and then to combine it with the combined XIV + SVXY returns data. (For the record, the SVIX hypothetical performance can be found here on the CBOE website)

# get formatted SVIX data from my dropbox (CBOE has it in a mess)

svix = pd.read_csv("https://www.dropbox.com/s/u8qiz7rh3rl7klw/SHORTVOL_Data.csv?raw=1", header = 0, parse_dates = True, index_col = 0)
svix.columns = ["Open", "High", "Low", "Close"]
svix_rets = svix['Close'].pct_change()

# put data set together

xiv_svxy = pd.concat([xiv_returns[:'2018-02-07'],svxy_returns['2018-02-08':]], axis = 0)
xiv_svxy_svix = pd.concat([xiv_svxy, svix_rets], axis = 1).dropna()
xiv_svxy_svix.tail()

final_data = xiv_svxy_svix
final_data.columns = ["XIV_SVXY", "SVIX"]

One thing that can be done right off the bat (which is a formality) is check if the distributions of XIV+SVXY or SVIX are normal in nature.

print(stats.describe(final_data['XIV_SVXY']))
print(stats.describe(final_data['SVIX']))
print(stats.describe(np.random.normal(size=10000)))

Which gives the following output:

DescribeResult(nobs=3527, minmax=(-0.9257575757575758, 0.1635036496350366), mean=0.0011627123490346562, variance=0.0015918321320673623, skewness=-4.325358554250933, kurtosis=85.06927230848028)
DescribeResult(nobs=3527, minmax=(-0.3011955533480766, 0.16095949898733686), mean=0.0015948970447533636, variance=0.0015014216189676208, skewness=-1.0811171524703087, kurtosis=4.453114992142524)
DescribeResult(nobs=10000, minmax=(-4.024990382591559, 4.017237262611489), mean=-0.012317646021121993, variance=0.9959681097965573, skewness=0.00367629631713188, kurtosis=0.0702696931810931)

Essentially, both of them are very non-normal (obviously), so any sort of statistical comparison using t-tests isn’t really valid. That basically leaves the Kruskal-Wallis test and Wilcoxon signed rank test to see if two data sets are different. From a conceptual level, the idea is fairly straightforward: the Kruskal-Wallis test is analogous to a two-sample independent t-test to see if one group differs from another, while the Wilcoxon signed rank test is analogous to a t-test of differences, except both use ranks of the observations rather than the actual values themselves.

Here’s the code for that:

stats.kruskal(final_data['SVIX'], final_data['XIV_SVXY'])
stats.wilcoxon(final_data['SVIX'], final_data['XIV_SVXY'])

With the output:

KruskalResult(statistic=0.8613306385456933, pvalue=0.3533665896055551)
WilcoxonResult(statistic=2947901.0, pvalue=0.0070668195307847575)

Essentially, when seen as two completely independent instruments, there isn’t enough statistical evidence to reject the idea that SVIX has no difference in terms of the ranks of its returns compared to XIV + SVXY, which would make a lot of sense, considering that for both, Feb. 5, 2018 was their worst day, and there wasn’t much of a difference between the two instruments prior to Feb. 5. In contrast, when considering the two instruments from the perspective of SVIX becoming the trading vehicle for what XIV used to be, and then comparing the differences against a 50% leveraged SVXY, then SVIX is the better instrument with differences that are statistically significant at the 1% level.

Basically, SVIX accomplishes its purpose of being an improved take on XIV/SVXY, because it was designed to be just that, with statistical evidence of exactly this.

One other interesting question to ask is when exactly did the differences in the Wilcoxon signed rank test start appearing? After all, SVIX is designed to have been identical to XIV prior to the crash and SVXY’s deleveraging. For this, we can use the endpoints function for Python I wrote in the last post.

# endpoints function

def endpoints(df, on = "M", offset = 0):
    """
    Returns index of endpoints of a time series analogous to R's endpoints
    function. 
    Takes in: 
        df -- a dataframe/series with a date index
         
        on -- a string specifying frequency of endpoints
         
        (E.G. "M" for months, "Q" for quarters, and so on)
         
        offset -- to offset by a specified index on the original data
        (E.G. if the data is daily resolution, offset of 1 offsets by a day)
        This is to allow for timing luck analysis. Thank Corey Hoffstein.
    """
     
    # to allow for familiarity with R
    # "months" becomes "M" for resampling
    if len(on) > 3:
        on = on[0].capitalize()
     
    # get index dates of formal endpoints
    ep_dates = pd.Series(df.index, index = df.index).resample(on).max()
     
    # get the integer indices of dates that are the endpoints
    date_idx = np.where(df.index.isin(ep_dates))
     
    # append zero and last day to match R's endpoints function
    # remember, Python is indexed at 0, not 1
    date_idx = np.insert(date_idx, 0, 0)
    date_idx = np.append(date_idx, df.shape[0]-1)
    if offset != 0:
        date_idx = date_idx + offset
        date_idx[date_idx < 0] = 0
        date_idx[date_idx > df.shape[0]-1] = df.shape[0]-1
    out = np.unique(date_idx)
    return out   

ep = endpoints(final_data)

dates = []
pvals = []
for i in range(0, (len(ep)-12)):
  data_subset = final_data.iloc[(ep[i]+1):ep[i+12]]
  pval = stats.wilcoxon(data_subset['SVIX'], data_subset['XIV_SVXY'])[1]
  date = data_subset.index[-1]
  dates.append(date)
  pvals.append(pval)
wilcoxTS = pd.Series(pvals, index = dates)
wilcoxTS.plot(figsize=(20,10))

wilcoxTS.tail(30)

The last 30 points in this monthly time series looks like this:

2017-11-29    0.951521
2017-12-28    0.890546
2018-01-30    0.721118
2018-02-27    0.561795
2018-03-28    0.464851
2018-04-27    0.900470
2018-05-30    0.595646
2018-06-28    0.405771
2018-07-30    0.228674
2018-08-30    0.132506
2018-09-27    0.085125
2018-10-30    0.249457
2018-11-29    0.230020
2018-12-28    0.522734
2019-01-30    0.224727
2019-02-27    0.055854
2019-03-28    0.034665
2019-04-29    0.019178
2019-05-30    0.065563
2019-06-27    0.071348
2019-07-30    0.056757
2019-08-29    0.129120
2019-09-27    0.148046
2019-10-30    0.014340
2019-11-27    0.006139
2019-12-26    0.000558
dtype: float64

And the corresponding chart looks like this:

Essentially, about six months after Feb. 5, 2018–I.E. about six months after SVXY deleveraged, we see the p-value for yearly rolling Wilcoxon signed rank tests (measured monthly) plummet and stay there.

So, the long story short is: once SVIX starts to trade, it should be the way to place short-vol, near-curve bets, as opposed to the 50% leveraged SVXY that traders must avail themselves with currently (or short VXX, with all of the mechanical and transaction risks present in that regard).

That said, from having tested SVIX with my own volatility trading strategy (which those interested can subscribe to, though in fair disclosure, this should be a strategy that diversifies a portfolio, and it’s a trend follower that was backtested in a world without Orange Twitler creating price jumps every month), the performance improves from backtesting with the 50% leveraged SVXY, but as I *dodged* Feb. 5, 2018, the results are better, but the risk is amplified as well, because there wasn’t really a protracted sideways market the likes of which we’ve seen the past couple of years for a long while.

In any case, thanks for reading.

NOTE: I am currently seeking a full-time opportunity either in the NYC or Philadelphia area (or remotely). Feel free to reach out to me on my LinkedIn, or find my resume here.

A Tale of an Edgy Panda and some Python Reviews

This post will be a quickie detailing a rather annoying…finding about the pandas package in Python.

For those not in the know, I’ve been taking some Python courses, trying to port my R finance skills into Python, because Python is more popular as far as employers go. (If you know of an opportunity, here’s my resume.) So, I’m trying to get my Python skills going, hopefully sooner rather than later.

However, for those that think Python is all that and a bag of chips, I hope to be able to disabuse people of that.

First and foremost, as far as actual accessible coursework goes on using Python, just a quick review of courses I’ve seen so far (at least as far as DataCamp goes):

The R/Finance courses (of which I teach one, on quantstrat, which is just my Nuts and Bolts series of blog posts with coding exercises) are of…reasonable quality, actually. I know for a fact that I’ve used Ross Bennett’s PortfolioAnalytics course teachings in a professional consulting manner before, quantstrat is used in industry, and I was explicitly told that my course is now used as a University of Washington Master’s in Computational Finance prerequisite.

In contrast, DataCamp’s Python for Finance courses have not particularly impressed me. While a course in basic time series manipulation is alright, I suppose, there is one course that just uses finance as an intro to numpy. There’s another course that tries to apply machine learning methodology to finance by measuring the performance of prediction algorithms with R-squareds, and saying it’s good when the R-squared values go from negative to zero, without saying anything of more reasonable financial measures, such as Sharpe Ratio, drawdown, and so on and so forth. There are also a couple of courses on the usual risk management/covariance/VaR/drawdown/etc. concepts that so many reading this blog are familiar with. The most interesting python for finance course I found there, was actually Dakota Wixom’s (a former colleague of mine, when I consulted for Yewno) on financial concepts, which covers things like time value of money, payback periods, and a lot of other really relevant concepts which deal with longer-term capital project investments (I know that because I distinctly remember an engineering finance course covering things such as IRR, WACC, and so on, with a bunch of real-life examples written by Lehigh’s former chair of the Industrial and Systems Engineering Department).

However, rather than take multiple Python courses not particularly focused on quant finance, I’d rather redirect any reader to just *one*, that covers all the concepts found in, well, just about all of the DataCamp finance courses–and more–in its first two (of four) chapters that I’m self-pacing right now.

This one!

It’s taught by Lionel Martellini of the EDHEC school as far as concepts go, but the lion’s share of it–the programming, is taught by the CEO of Optimal Asset Management, Vijay Vaidyanathan. I worked for Vijay in 2013 and 2014, and essentially, he made my R coding (I didn’t use any spaces or style in my code.) into, well, what allow you, the readers, to follow along with my ideas in code. In fact, I started this blog shortly after I left Optimal. Basically, I view that time in my career as akin to a second master’s degree. Everyone that praises any line of code on this blog…you have Vijay to thank for that. So, I’m hoping that his courses on Python will actually get my Python skills to the point that they get me more job opportunities (hopefully quickly).

However, if people think that Python is as good as R as far as finance goes, well…so far, the going isn’t going to be easy. Namely, I’ve found that working on finance in R is much easier than in Python thanks to R’s fantastic libraries written by Brian Peterson, Josh Ulrich, Jeff Ryan, and the rest of the R/Finance crew (I wonder if I’m part of it considering I taught a course like they did).

In any case, I’ve been trying to replicate the endpoints function from R in Python, because I always use it to do subsetting for asset allocation, and because I think that being able to jump between yearly, quarterly, monthly, and even daily indices to account for timing luck–(EG if you rebalance a portfolio quarterly on Mar/Jun/Sep/Dec, does it have a similar performance to a portfolio rebalanced Jan/Apr/Jul/Oct, or how does a portfolio perform depending on the day of month it’s rebalanced, and so on)–is something fairly important that should be included in the functionality of any comprehensively-built asset allocation package. You have Corey Hoffstein of Think Newfound to thank for that, and while I’ve built in daily offsets into a generalized asset allocation function I’m working on, my last post shows that there are a lot of devils hiding in the details of how one chooses–or even measures–lookbacks and rebalancing periods.

Moving on, here’s an edge case in Python’s Pandas package, regarding how Python sees weeks. That is, I dub it–an edgy panda. Basically, imagine a panda in a leather vest with a mohawk. The issue is that in some cases, the very end of one year is seen as the start of a next one, and thus the week count is seen as 1 rather than 52 or 53, which makes finding the last given day of a week not exactly work in some cases.

So, here’s some Python code to get our usual Adaptive Asset Allocation universe.

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from pandas_datareader import data
import datetime as dt
from datetime import datetime

tickers = ["SPY", "VGK",   "EWJ",  "EEM",  "VNQ",  "RWX",  "IEF",  "TLT",  "DBC",  "GLD"]

# We would like all available data from 01/01/2000 until 12/31/2016.
start_date = '1990-01-01'
end_date = dt.datetime.today().strftime('%Y-%m-%d')

# Uses pandas_reader.data.DataReader to load the desired data. As simple as that.

adj_prices = []
for ticker in tickers:
    tickerData = data.DataReader(ticker, 'yahoo', start_date)
    adj_etf = tickerData.loc[:,'Adj Close']
    adj_prices.append(adj_etf)

adj_prices = pd.concat(adj_prices, axis = 1)
adj_prices.columns = tickers
adj_prices = adj_prices.dropna()
rets = adj_prices.pct_change().dropna()

df = rets

Anyhow, here’s something I found interesting, when trying to port over R’s endpoints function. Namely, in that while looking for a way to get the monthly endpoints, I found the following line on StackOverflow:

tmp = df.reset_index().groupby([df.index.year,df.index.month],as_index=False).last().set_index('Date')

Which gives the following ouptut:

tmp.head()
Out[59]: 
                 SPY       VGK       EWJ  ...       TLT       DBC       GLD
Date                                      ...                              
2006-12-29 -0.004149 -0.003509  0.001409  ... -0.000791  0.004085  0.004928
2007-01-31  0.006723  0.005958 -0.004175  ...  0.008408  0.010531  0.009499
2007-02-28  0.010251  0.010942 -0.001353  ... -0.004528  0.015304  0.016358
2007-03-30  0.000211  0.001836 -0.006817  ... -0.001923 -0.014752  0.001371
2007-04-30 -0.008293 -0.003852 -0.007644  ...  0.010475 -0.008915 -0.006957

So far, so good. Right? Well, here’s an edgy panda that pops up when I try to narrow the case down to weeks. Why? Because endpoints in R has that functionality, so for the sake of meticulousness, I simply decided to change up the line from monthly to weekly. Here’s *that* input and output.

tmp = df.reset_index().groupby([df.index.year, df.index.week],as_index=False).last().set_index('Date')

tmp.head()
Out[61]: 
                 SPY       VGK       EWJ  ...       TLT       DBC       GLD
Date                                      ...                              
2006-12-22 -0.006143 -0.002531  0.003551  ... -0.007660  0.007736  0.004399
2006-12-29 -0.004149 -0.003509  0.001409  ... -0.000791  0.004085  0.004928
2007-12-31 -0.007400 -0.010449  0.002262  ...  0.006055  0.001269 -0.006506
2007-01-12  0.007598  0.005913  0.012978  ... -0.004635  0.023400  0.025400
2007-01-19  0.001964  0.010903  0.007097  ... -0.002720  0.015038  0.011886

[5 rows x 10 columns]

Notice something funny? Instead of 2007-01-07, we get 2007-12-31. I even asked some people that use Python as their bread and butter (of which, hopefully, I will be one of soon) what was going on, and after some back and forth, it was found that the ISO standard has some weird edge cases relating to the final week of some years, and that the output is, apparently, correct, in that 2007-12-31 is apparently the first week of 2008 according to some ISO standard. Generally, when dealing with such edge cases in pandas (hence, edgy panda!), I look for another work-around. Thanks to help from Dr. Vaidyanathan, I got that workaround with the following input and output.

tmp = pd.Series(df.index,index=df.index).resample('W').max()
tmp.head(6)
Out[62]: 
Date
2006-12-24   2006-12-22
2006-12-31   2006-12-29
2007-01-07   2007-01-05
2007-01-14   2007-01-12
2007-01-21   2007-01-19
2007-01-28   2007-01-26
Freq: W-SUN, Name: Date, dtype: datetime64[ns]

Now, *that* looks far more reasonable. With this, we can write a proper endpoints function.

def endpoints(df, on = "M", offset = 0):
    """
    Returns index of endpoints of a time series analogous to R's endpoints
    function. 
    Takes in: 
        df -- a dataframe/series with a date index
        
        on -- a string specifying frequency of endpoints
        
        (E.G. "M" for months, "Q" for quarters, and so on)
        
        offset -- to offset by a specified index on the original data
        (E.G. if the data is daily resolution, offset of 1 offsets by a day)
        This is to allow for timing luck analysis. Thank Corey Hoffstein.
    """
    
    # to allow for familiarity with R
    # "months" becomes "M" for resampling
    if len(on) > 3:
        on = on[0].capitalize()
    
    # get index dates of formal endpoints
    ep_dates = pd.Series(df.index, index = df.index).resample(on).max()
    
    # get the integer indices of dates that are the endpoints
    date_idx = np.where(df.index.isin(ep_dates))
    
    # append zero and last day to match R's endpoints function
    # remember, Python is indexed at 0, not 1
    date_idx = np.insert(date_idx, 0, 0)
    date_idx = np.append(date_idx, df.shape[0]-1)
    if offset != 0:
        date_idx = date_idx + offset
        date_idx[date_idx < 0] = 0
        date_idx[date_idx > df.shape[0]-1] = df.shape[0]-1
    out = np.unique(date_idx)
    return out    

Essentially, the function takes in 3 arguments: first, your basic data frame (or series–which is essentially just a time-indexed data frame in Python to my understanding).


Next, it takes the “on” argument, which can take either a string such as “months”, or just a one-letter term for immediate use with Python’s resample function (I forget all the abbreviations, but I do know that there’s W, M, Q, and Y for weekly, monthly, quarterly, and yearly), which the function will convert a longer string into. That way, for those coming from R, this function will be backwards compatible.


Lastly, because Corey Hoffstein makes a big deal about it and I respect his accomplishments, the offset argument, which offsets the endpoints by the amount specified, at the frequency of the original data. That is, if you take quarterly endpoints using daily frequency data, the function won’t read your mind and offset the quarterly endpoints by a month, which *is* functionality that probably should be *somewhere*, but currently exists neither in R nor in Python, at least not in the public sphere, so I suppose I’ll have to write it…eventually.

Anyway, here’s how the function works (now in Python!) using the data in this post:

endpoints(rets, on = "weeks")[0:20]
Out[98]: 
array([ 0,  2,  6,  9, 14, 18, 23, 28, 33, 38, 42, 47, 52, 57, 62, 67, 71,
       76, 81, 86], dtype=int64)

endpoints(rets, on = "weeks", offset = 2)[0:20]
Out[99]: 
array([ 2,  4,  8, 11, 16, 20, 25, 30, 35, 40, 44, 49, 54, 59, 64, 69, 73,
       78, 83, 88], dtype=int64)

endpoints(rets, on = "months")
Out[100]: 
array([   0,    6,   26,   45,   67,   87,  109,  130,  151,  174,  193,
        216,  237,  257,  278,  298,  318,  340,  361,  382,  404,  425,
        446,  469,  488,  510,  530,  549,  571,  592,  612,  634,  656,
        677,  698,  720,  740,  762,  781,  800,  823,  844,  864,  886,
        907,  929,  950,  971,  992, 1014, 1034, 1053, 1076, 1096, 1117,
       1139, 1159, 1182, 1203, 1224, 1245, 1266, 1286, 1306, 1328, 1348,
       1370, 1391, 1412, 1435, 1454, 1475, 1496, 1516, 1537, 1556, 1576,
       1598, 1620, 1640, 1662, 1684, 1704, 1727, 1747, 1768, 1789, 1808,
       1829, 1850, 1871, 1892, 1914, 1935, 1956, 1979, 1998, 2020, 2040,
       2059, 2081, 2102, 2122, 2144, 2166, 2187, 2208, 2230, 2250, 2272,
       2291, 2311, 2333, 2354, 2375, 2397, 2417, 2440, 2461, 2482, 2503,
       2524, 2544, 2563, 2586, 2605, 2627, 2649, 2669, 2692, 2712, 2734,
       2755, 2775, 2796, 2815, 2836, 2857, 2879, 2900, 2921, 2944, 2963,
       2986, 3007, 3026, 3047, 3066, 3087, 3108, 3130, 3150, 3172, 3194,
       3214, 3237, 3257, 3263], dtype=int64)

endpoints(rets, on = "months", offset = 10)
Out[101]: 
array([  10,   16,   36,   55,   77,   97,  119,  140,  161,  184,  203,
        226,  247,  267,  288,  308,  328,  350,  371,  392,  414,  435,
        456,  479,  498,  520,  540,  559,  581,  602,  622,  644,  666,
        687,  708,  730,  750,  772,  791,  810,  833,  854,  874,  896,
        917,  939,  960,  981, 1002, 1024, 1044, 1063, 1086, 1106, 1127,
       1149, 1169, 1192, 1213, 1234, 1255, 1276, 1296, 1316, 1338, 1358,
       1380, 1401, 1422, 1445, 1464, 1485, 1506, 1526, 1547, 1566, 1586,
       1608, 1630, 1650, 1672, 1694, 1714, 1737, 1757, 1778, 1799, 1818,
       1839, 1860, 1881, 1902, 1924, 1945, 1966, 1989, 2008, 2030, 2050,
       2069, 2091, 2112, 2132, 2154, 2176, 2197, 2218, 2240, 2260, 2282,
       2301, 2321, 2343, 2364, 2385, 2407, 2427, 2450, 2471, 2492, 2513,
       2534, 2554, 2573, 2596, 2615, 2637, 2659, 2679, 2702, 2722, 2744,
       2765, 2785, 2806, 2825, 2846, 2867, 2889, 2910, 2931, 2954, 2973,
       2996, 3017, 3036, 3057, 3076, 3097, 3118, 3140, 3160, 3182, 3204,
       3224, 3247, 3263], dtype=int64)

endpoints(rets, on = "quarters")
Out[102]: 
array([   0,    6,   67,  130,  193,  257,  318,  382,  446,  510,  571,
        634,  698,  762,  823,  886,  950, 1014, 1076, 1139, 1203, 1266,
       1328, 1391, 1454, 1516, 1576, 1640, 1704, 1768, 1829, 1892, 1956,
       2020, 2081, 2144, 2208, 2272, 2333, 2397, 2461, 2524, 2586, 2649,
       2712, 2775, 2836, 2900, 2963, 3026, 3087, 3150, 3214, 3263],
      dtype=int64)

endpoints(rets, on = "quarters", offset = 10)
Out[103]: 
array([  10,   16,   77,  140,  203,  267,  328,  392,  456,  520,  581,
        644,  708,  772,  833,  896,  960, 1024, 1086, 1149, 1213, 1276,
       1338, 1401, 1464, 1526, 1586, 1650, 1714, 1778, 1839, 1902, 1966,
       2030, 2091, 2154, 2218, 2282, 2343, 2407, 2471, 2534, 2596, 2659,
       2722, 2785, 2846, 2910, 2973, 3036, 3097, 3160, 3224, 3263],
      dtype=int64)

So, that’s that. Endpoints, in Python. Eventually, I’ll try and port over Return.portfolio and charts.PerformanceSummary as well in the future.

Thanks for reading.

NOTE: I am currently enrolled in Thinkful’s python/PostGresSQL data science bootcamp while also actively looking for full-time (or long-term contract) opportunities in New York, Philadelphia, or remotely. If you know of an opportunity I may be a fit for, please don’t hesitate to contact me on my LinkedIn or just feel free to take my resume from my DropBox (and if you’d like, feel free to let me know how I can improve it).

How You Measure Months Matters — A Lot. A Look At Two Implementations of KDA

This post will detail a rather important finding I found while implementing a generalized framework for momentum asset allocation backtests. Namely, that when computing momentum (and other financial measures for use in asset allocation, such as volatility and correlations), measuring formal months, from start to end, has a large effect on strategy performance.

So, first off, I am in the job market, and am actively looking for a full-time role (preferably in New York City, or remotely), or a long-term contract. Here is my resume, and here is my LinkedIn profile. Furthermore, I’ve been iterating on my volatility strategy, and given that I’ve seen other services with large drawdowns, or less favorable risk/reward profiles charge $50/month, I think following my trades can be a reasonable portfolio diversification tool. Read about it and subscribe here. I believe that my body of work on this blog speaks to the viability of employing me, though I am also learning Python to try and port over my R skills over there, as everyone seems to want Python, and R much less so, hence the difficulty transferring between opportunities.

Anyhow, one thing I am working on is a generalized framework for tactical asset allocation (TAA) backtests. Namely, those that take the form of “sort universe by momentum, apply diversification weighting scheme”–namely, the kinds of strategies that the folks over at AllocateSmartly deal in. I am also working on this framework and am happy to announce that as of the time of this writing, I will happily work with individuals that want more customized TAA backtests, as the AllocateSmartly FAQs state that AllocateSmartly themselves do not do custom backtests. The framework I am currently in the process of implementing is designed to do just that. However, after going through some painstaking efforts to compare apples to apples, I came across a very important artifact. Namely, that there is a fairly large gulf in performance between measuring months from their formal endpoints, as opposed to simply approximating months with 21-day chunks (E.G. 21 days for 1 month, 63 for 3, and so on).

Here’s the code I’ve been developing recently–the long story short, is that the default options essentially default to Adaptive Asset Allocation, but depending on the parameters one inputs, it’s possible to get to something as simple as dual momentum (3 assets, invest in top 1), or as complex as KDA, with options to fine-tune it even further, such as to account for the luck-based timing that Corey Hoffstein at Newfound Research loves to write about (speaking of whom, he and the awesome folks at ReSolve Asset Management have launched a new ETF called ROMO–Robust Momentum–I recently bought a bunch in my IRA because a buy-it-and-forget-it TAA ETF is pretty fantastic as far as buy-and-hold investments go). Again, I set a bunch of defaults in the parameters so that most of them can be ignored.

require(PerformanceAnalytics)
require(quantmod)
require(tseries)

stratStats <- function(rets) {
  stats <- rbind(table.AnnualizedReturns(rets), maxDrawdown(rets))
  stats[5,] <- stats[1,]/stats[4,]
  stats[6,] <- stats[1,]/UlcerIndex(rets)
  rownames(stats)[4] <- "Worst Drawdown"
  rownames(stats)[5] <- "Calmar Ratio"
  rownames(stats)[6] <- "Ulcer Performance Index"
  return(stats)
}


getYahooReturns <- function(symbols, return_column = "Ad") {
  returns <- list()
  for(symbol in symbols) {
    getSymbols(symbol, from = '1990-01-01', adjustOHLC = TRUE)
    if(return_column == "Ad") {
      return <- Return.calculate(Ad(get(symbol)))
      colnames(return) <- gsub("\\.Adjusted", "", colnames(return))
    } else {
      return <- Return.calculate(Op(get(symbol)))
      colnames(return) <- gsub("\\.Open", "", colnames(return))
      
    }
    returns[[symbol]] <- return
  }
  returns <- na.omit(do.call(cbind, returns))
  return(returns)
}

symbols <- c("SPY", "VGK",   "EWJ",  "EEM",  "VNQ",  "RWX",  "IEF",  "TLT",  "DBC",  "GLD")  

returns <- getYahooReturns(symbols)
canary <- getYahooReturns(c("VWO", "BND"))

# offsets endpoints by a certain amount of days (I.E. 1-21)
dailyOffset <- function(ep, offset = 0) {
  
  ep <- ep + offset
  ep[ep < 1] <- 1
  ep[ep > nrow(returns)] <- nrow(returns)
  ep <- unique(ep)
  epDiff <- diff(ep)
  if(last(epDiff)==1) { 
    # if the last period only has one observation, remove it
    ep <- ep[-length(ep)]
  }
  return(ep)
}

# computes total weighted momentum and penalizes new assets (if desired)
compute_total_momentum <- function(yearly_subset, 
                                   momentum_lookbacks, momentum_weights,
                                   old_weights, new_asset_mom_penalty) {
  
  empty_vec <- data.frame(t(rep(0, ncol(yearly_subset)))) 
  colnames(empty_vec) <- colnames(yearly_subset)
  
  total_momentum <- empty_vec
  for(j in 1:length(momentum_lookbacks)) {
    momentum_subset <- tail(yearly_subset, momentum_lookbacks[j])
    total_momentum <- total_momentum + Return.cumulative(momentum_subset) * 
      momentum_weights[j]  
  }
  
  # if asset returns are negative, penalize by *increasing* negative momentum
  # this algorithm assumes we go long only
  total_momentum[old_weights == 0] <- total_momentum[old_weights==0] * 
    (1-new_asset_mom_penalty * sign(total_momentum[old_weights==0]))
  
  return(total_momentum)
}

# compute weighted correlation matrix
compute_total_correlation <- function(data, cor_lookbacks, cor_weights) {
  
  # compute total correlation matrix
  total_cor <- matrix(nrow=ncol(data), ncol=ncol(data), 0)
  rownames(total_cor) <- colnames(total_cor) <- colnames(data)
  for(j in 1:length(cor_lookbacks)) {
    total_cor = total_cor + cor(tail(data, cor_lookbacks[j])) * cor_weights[j]
  }
  
  return(total_cor)
}

# computes total weighted volatility
compute_total_volatility <- function(data, vol_lookbacks, vol_weights) {
  empty_vec <- data.frame(t(rep(0, ncol(data))))
  colnames(empty_vec) <- colnames(data)
  
  # normalize weights if not already normalized
  if(sum(vol_weights) != 1) {
    vol_weights <- vol_weights/sum(vol_weights)
  }
  
  # compute total volrelation matrix
  total_vol <- empty_vec
  for(j in 1:length(vol_lookbacks)) {
    total_vol = total_vol + StdDev.annualized(tail(data, vol_lookbacks[j])) * vol_weights[j]
  }
  
  return(total_vol)
}

check_valid_parameters() {
  if(length(mom_weights) != length(mom_lookbacks)) {
    stop("Momentum weight length must be equal to momentum lookback length.") }
  
  if(length(cor_weights) != length(cor_lookbacks)) {
    stop("Correlation weight length must be equal to correlation lookback length.")
  }
  
  if(length(vol_weights) != length(vol_lookbacks)) {
    stop("Volatility weight length must be equal to volatility lookback length.")
  }
}


# computes weights as a function proportional to the inverse of total variance
invVar <- function(returns, lookbacks, lookback_weights) {
  var <- compute_total_volatility(returns, lookbacks, lookback_weights)^2
  invVar <- 1/var
  return(invVar/sum(invVar))
}

# computes weights as a function proportional to the inverse of total volatility
invVol <- function(returns, lookbacks, lookback_weights) {
  vol <- compute_total_volatility(returns, lookbacks, lookback_weights)
  invVol <- 1/vol
  return(invVol/sum(invVol))
}

# computes equal weight portfolio
ew <- function(returns) {
  return(StdDev(returns)/(StdDev(returns)*ncol(returns)))
}

# computes minimum 
minVol <- function(returns, cor_lookbacks, cor_weights, vol_lookbacks, vol_weights) {
  vols <- compute_total_volatility(returns, vol_lookbacks, vol_weights)
  cors <- compute_total_correlation(returns, cor_lookbacks, cor_weights)
  covs <- t(vols) %*% as.numeric(vols) * cors
  min_vol_rets <- t(matrix(rep(1, ncol(covs))))
  min_vol_wt <- portfolio.optim(x=min_vol_rets, covmat = covs)$pw
  names(min_vol_wt) <- rownames(covs)
  return(min_vol_wt)
}

asset_allocator <- function(returns, 
                           canary_returns = NULL, # canary assets for KDA algorithm and similar
                           
                           mom_threshold = 0, # threshold momentum must exceed
                           mom_lookbacks = 126, # momentum lookbacks for custom weights (EG 1-3-6-12)
                           
                           # weights on various momentum lookbacks (EG 12/19, 4/19, 2/19, 1/19)
                           mom_weights = rep(1/length(mom_lookbacks), 
                                             length(mom_lookbacks)), 
                           
                           # repeat for correlation weights
                           cor_lookbacks = mom_lookbacks, # correlation lookback
                           cor_weights = rep(1/length(mom_lookbacks), 
                                             length(mom_lookbacks)),
                           
                           vol_lookbacks = 20, # volatility lookback
                           vol_weights = rep(1/length(vol_lookbacks), 
                                             length(vol_lookbacks)),
                           
                           # number of assets to hold (if all above threshold)
                           top_n = floor(ncol(returns)/2), 
                           
                           # diversification weight scheme (ew, invVol, invVar, minVol, etc.)
                           weight_scheme = "minVol",
                           
                           # how often holdings rebalance
                           rebalance_on = "months",
                           
                           # how many days to offset rebalance period from end of month/quarter/year
                           offset = 0, 
                           
                           # penalize new asset mom to reduce turnover
                           new_asset_mom_penalty = 0, 
                           
                           # run Return.Portfolio, or just return weights?
                           # for use in robust momentum type portfolios
                           compute_portfolio_returns = TRUE,
                           verbose = FALSE,
                           
                           # crash protection asset
                           crash_asset = NULL,
                           ...
                           ) {
  
  # normalize weights
  mom_weights <- mom_weights/sum(mom_weights)
  cor_weights <- cor_weights/sum(cor_weights)
  vol_weights <- vol_weights/sum(vol_weights)
  
  # if we have canary returns (I.E. KDA strat), align both time periods
  if(!is.null(canary_returns)) {
   smush <- na.omit(cbind(returns, canary_returns))
   returns <- smush[,1:ncol(returns)]
   canary_returns <- smush[,-c(1:ncol(returns))]
   empty_canary_vec <- data.frame(t(rep(0, ncol(canary_returns))))
   colnames(empty_canary_vec) <- colnames(canary_returns)
  }
  
  # get endpoints and offset them
  ep <- endpoints(returns, on = rebalance_on)
  ep <- dailyOffset(ep, offset = offset)
  
  # initialize vector holding zeroes for assets
  empty_vec <- data.frame(t(rep(0, ncol(returns))))
  colnames(empty_vec) <- colnames(returns)
  weights <- empty_vec
  
  # initialize list to hold all our weights
  all_weights <- list()
  
  # get number of periods per year
  switch(rebalance_on,
         "months" = { yearly_periods = 12},
         "quarters" = { yearly_periods = 4},
         "years" = { yearly_periods = 1})
  
  for(i in 1:(length(ep) - yearly_periods)) {
    
    # remember old weights for the purposes of penalizing momentum of new assets
    old_weights <- weights
    
    # subset one year of returns, leave off first day 
    return_subset <- returns[c((ep[i]+1):ep[(i+yearly_periods)]),]

    # compute total weighted momentum, penalize potential new assets if desired
    momentums <- compute_total_momentum(return_subset,  
                                        momentum_lookbacks = mom_lookbacks,
                                        momentum_weights = mom_weights,
                                        old_weights = old_weights, 
                                        new_asset_mom_penalty = new_asset_mom_penalty)
    
    # rank negative momentum so that best asset is ranked 1 and so on
    momentum_ranks <- rank(-momentums)
    selected_assets <- momentum_ranks <= top_n & momentums > mom_threshold
    selected_subset <- return_subset[, selected_assets]
    
    # case of 0 valid assets
    if(sum(selected_assets)==0) {
      weights <- empty_vec
    } else if (sum(selected_assets)==1) {
      
      # case of only 1 valid asset -- invest everything into it
      weights <- empty_vec + selected_assets
      
    } else {
      # apply a user-selected weighting algorithm
      # modify this portion to select more weighting schemes
      if (weight_scheme == "ew") {
        weights <- ew(selected_subset)
      } else if (weight_scheme == "invVol") {
        weights <- invVol(selected_subset, vol_lookbacks, vol_weights)
      } else if (weight_scheme == "invVar"){
        weights <- invVar(selected_subset, vol_lookbacks, vol_weights)
      } else if (weight_scheme == "minVol") {
        weights <- minVol(selected_subset, cor_lookbacks, cor_weights,
                          vol_lookbacks, vol_weights)
      } 
    }
    
    # include all assets
    wt_names <- names(weights) 
    if(is.null(wt_names)){wt_names <- colnames(weights)}
    zero_weights <- empty_vec
    zero_weights[wt_names] <- weights
    weights <- zero_weights
    weights <- xts(weights, order.by=last(index(return_subset)))
    
    # if there's a canary universe, modify weights by fraction with positive momentum
    # if there's a safety asset, allocate the crash protection modifier to it.
    if(!is.null(canary_returns)) {
      canary_subset <- canary_returns[c(ep[i]:ep[(i+yearly_periods)]),]
      canary_subset <- canary_subset[-1,]
      canary_mom <- compute_total_momentum(canary_subset, 
                                           mom_lookbacks, mom_weights,
                                           empty_canary_vec, 0)
      canary_mod <- mean(canary_mom > 0)
      weights <- weights * canary_mod
      if(!is.null(crash_asset)) {
        if(momentums[crash_asset] > mom_threshold) {
          weights[,crash_asset] <- weights[,crash_asset] + (1-canary_mod)
        }
      }
    }
    
    all_weights[[i]] <- weights
  }
  
  # combine weights
  all_weights <- do.call(rbind, all_weights)
  if(compute_portfolio_returns) {
    strategy_returns <- Return.portfolio(R = returns, weights = all_weights, verbose = verbose)
    return(list(all_weights, strategy_returns))
  }
  return(all_weights)
  
}

#out <- asset_allocator(returns, offset = 0)
kda <- asset_allocator(returns = returns, canary_returns = canary, 
                       mom_lookbacks = c(21, 63, 126, 252),
                       mom_weights = c(12, 4, 2, 1),
                       cor_lookbacks = c(21, 63, 126, 252),
                       cor_weights = c(12, 4, 2, 1), vol_lookbacks = 21,
                       weight_scheme = "minVol",
                       crash_asset = "IEF")


The one thing that I’d like to focus on, however, are the lookback parameters. Essentially, assuming daily data, they’re set using a *daily lookback*, as that’s what AllocateSmartly did when testing my own KDA Asset Allocation algorithm. Namely, the salient line is this:

“For all assets across all three universes, at the close on the last trading day of the month, calculate a “momentum score” as follows:(12 * (p0 / p21 – 1)) + (4 * (p0 / p63 – 1)) + (2 * (p0 / p126 – 1)) + (p0 / p252 – 1)Where p0 = the asset’s price at today’s close, p1 = the asset’s price at the close of the previous trading day and so on. 21, 63, 126 and 252 days correspond to 1, 3, 6 and 12 months.”

So, to make sure I had apples to apples when trying to generalize KDA asset allocation, I compared the output of my new algorithm, asset_allocator (or should I call it allocate_smartly ?=] ) to my formal KDA asset allocation algorithm.

Here are the results:

                            KDA_algo KDA_approximated_months
Annualized Return         0.10190000              0.08640000
Annualized Std Dev        0.09030000              0.09040000
Annualized Sharpe (Rf=0%) 1.12790000              0.95520000
Worst Drawdown            0.07920336              0.09774612
Calmar Ratio              1.28656163              0.88392257
Ulcer Performance Index   3.78648873              2.62691398

Essentially, the long and short of it is that I modified my original KDA algorithm until I got identical output to my asset_allocator algorithm, then went back to the original KDA algorithm. The salient difference is this part:

# computes total weighted momentum and penalizes new assets (if desired)
compute_total_momentum <- function(yearly_subset, 
                                   momentum_lookbacks, momentum_weights,
                                   old_weights, new_asset_mom_penalty) {
  
  empty_vec <- data.frame(t(rep(0, ncol(yearly_subset)))) 
  colnames(empty_vec) <- colnames(yearly_subset)
  
  total_momentum <- empty_vec
  for(j in 1:length(momentum_lookbacks)) {
    momentum_subset <- tail(yearly_subset, momentum_lookbacks[j])
    total_momentum <- total_momentum + Return.cumulative(momentum_subset) * 
      momentum_weights[j]  
  }
  
  # if asset returns are negative, penalize by *increasing* negative momentum
  # this algorithm assumes we go long only
  total_momentum[old_weights == 0] <- total_momentum[old_weights==0] * 
    (1-new_asset_mom_penalty * sign(total_momentum[old_weights==0]))
  
  return(total_momentum)
}

Namely, the part that further subsets the yearly subset by the lookback period, in terms of days, rather than monthly endpoints. Essentially, the difference in the exact measurement of momentum–that is, the measurement that explicitly selects *which* instruments the algorithm will allocate to in a particular period, unsurprisingly, has a large impact on the performance of the algorithm.

And lest anyone think that this phenomena no longer applies, here’s a yearly performance comparison.

                KDA_algo KDA_approximated_months
2008-12-31  0.1578348930             0.062776766
2009-12-31  0.1816957178             0.166017499
2010-12-31  0.1779839604             0.160781537
2011-12-30  0.1722014474             0.149143148
2012-12-31  0.1303019332             0.103579674
2013-12-31  0.1269207487             0.134197066
2014-12-31  0.0402888320             0.071784979
2015-12-31 -0.0119459453            -0.028090873
2016-12-30  0.0125302658             0.002996917
2017-12-29  0.1507895287             0.133514924
2018-12-31  0.0747520266             0.062544709
2019-11-27  0.0002062636             0.008798310

Of note: the variant that formally measures momentum from monthly endpoints consistently outperforms the one using synthetic monthly measurements.

So, that will do it for this post. I hope to have a more thorough walk-through of the asset_allocator function in the very near future before moving onto Python-related matters (hopefully), but I thought that this artifact, and just how much it affects outcomes, was too important not to share.

An iteration of the algorithm capable of measuring momentum with proper monthly endpoints should be available in the near future.

Thanks for reading.

KDA–Robustness Results

This post will display some robustness results for KDA asset allocation.

Ultimately, the two canary instruments fare much better using the original filter weights in Defensive Asset Allocation than in other variants of the weights for the filter. While this isn’t as worrying (the filter most likely was created that way and paired with those instruments by design), what *is* somewhat more irritating is that the strategy is dependent upon the end-of-month phenomenon, meaning this strategy cannot be simply tranched throughout an entire trading month.

So first off, let’s review the code from last time:

# KDA asset allocation 
# KDA stands for Kipnis Defensive Adaptive (Asset Allocation).

# compute strategy statistics
stratStats <- function(rets) {
  stats <- rbind(table.AnnualizedReturns(rets), maxDrawdown(rets))
  stats[5,] <- stats[1,]/stats[4,]
  stats[6,] <- stats[1,]/UlcerIndex(rets)
  rownames(stats)[4] <- "Worst Drawdown"
  rownames(stats)[5] <- "Calmar Ratio"
  rownames(stats)[6] <- "Ulcer Performance Index"
  return(stats)
}

# required libraries
require(quantmod)
require(PerformanceAnalytics)
require(tseries)

# symbols
symbols <- c("SPY", "VGK",   "EWJ",  "EEM",  "VNQ",  "RWX",  "IEF",  "TLT",  "DBC",  "GLD", "VWO", "BND")  


# get data
rets <- list()
for(i in 1:length(symbols)) {
  
  returns <- Return.calculate(Ad(get(getSymbols(symbols[i], from = '1990-01-01'))))
  colnames(returns) <- symbols[i]
  rets[[i]] <- returns
}
rets <- na.omit(do.call(cbind, rets))


# algorithm
KDA <- function(rets, offset = 0, leverageFactor = 1.5, momWeights = c(12, 4, 2, 1)) {
  
  # get monthly endpoints, allow for offsetting ala AllocateSmartly/Newfound Research
  ep <- endpoints(rets) + offset
  ep[ep < 1] <- 1
  ep[ep > nrow(rets)] <- nrow(rets)
  ep <- unique(ep)
  epDiff <- diff(ep)
  if(last(epDiff)==1) { # if the last period only has one observation, remove it
    ep <- ep[-length(ep)]
  }
  
  # initialize vector holding zeroes for assets
  emptyVec <- data.frame(t(rep(0, 10)))
  colnames(emptyVec) <- symbols[1:10]
  
  
  allWts <- list()
  # we will use the 13612F filter
  for(i in 1:(length(ep)-12)) {
    
    # 12 assets for returns -- 2 of which are our crash protection assets
    retSubset <- rets[c((ep[i]+1):ep[(i+12)]),]
    epSub <- ep[i:(i+12)]
    sixMonths <- rets[(epSub[7]+1):epSub[13],]
    threeMonths <- rets[(epSub[10]+1):epSub[13],]
    oneMonth <- rets[(epSub[12]+1):epSub[13],]
    
    # computer 13612 fast momentum
    moms <- Return.cumulative(oneMonth) * momWeights[1] + Return.cumulative(threeMonths) * momWeights[2] + 
      Return.cumulative(sixMonths) * momWeights[3] + Return.cumulative(retSubset) * momWeights[4]
    assetMoms <- moms[,1:10] # Adaptive Asset Allocation investable universe
    cpMoms <- moms[,11:12] # VWO and BND from Defensive Asset Allocation
    
    # find qualifying assets
    highRankAssets <- rank(assetMoms) >= 6 # top 5 assets
    posReturnAssets <- assetMoms > 0 # positive momentum assets
    selectedAssets <- highRankAssets & posReturnAssets # intersection of the above
    
    # perform mean-variance/quadratic optimization
    investedAssets <- emptyVec
    if(sum(selectedAssets)==0) {
      investedAssets <- emptyVec
    } else if(sum(selectedAssets)==1) {
      investedAssets <- emptyVec + selectedAssets 
    } else {
      idx <- which(selectedAssets)
      # use 1-3-6-12 fast correlation average to match with momentum filter  
      cors <- (cor(oneMonth[,idx]) * momWeights[1] + cor(threeMonths[,idx]) * momWeights[2] + 
                 cor(sixMonths[,idx]) * momWeights[3] + cor(retSubset[,idx]) * momWeights[4])/sum(momWeights)
      vols <- StdDev(oneMonth[,idx]) # use last month of data for volatility computation from AAA
      covs <- t(vols) %*% vols * cors
      
      # do standard min vol optimization
      minVolRets <- t(matrix(rep(1, sum(selectedAssets))))
      minVolWt <- portfolio.optim(x=minVolRets, covmat = covs)$pw
      names(minVolWt) <- colnames(covs)
      investedAssets <- emptyVec
      investedAssets[,selectedAssets] <- minVolWt
    }
    
    # crash protection -- between aggressive allocation and crash protection allocation
    pctAggressive <- mean(cpMoms > 0)
    investedAssets <- investedAssets * pctAggressive 
    
    pctCp <- 1-pctAggressive
    
    # if IEF momentum is positive, invest all crash protection allocation into it
    # otherwise stay in cash for crash allocation
    if(assetMoms["IEF"] > 0) {
      investedAssets["IEF"] <- investedAssets["IEF"] + pctCp
    }
    
    # leverage portfolio if desired in cases when both risk indicator assets have positive momentum
    if(pctAggressive == 1) {
      investedAssets = investedAssets * leverageFactor
    }
    
    # append to list of monthly allocations
    wts <- xts(investedAssets, order.by=last(index(retSubset)))
    allWts[[i]] <- wts
    
  }
  
  # put all weights together and compute cash allocation
  allWts <- do.call(rbind, allWts)
  allWts$CASH <- 1-rowSums(allWts)
  
  # add cash returns to universe of investments
  investedRets <- rets[,1:10]
  investedRets$CASH <- 0
  
  # compute portfolio returns
  out <- Return.portfolio(R = investedRets, weights = allWts)
  return(list(allWts, out))
}

So, the idea is that we take the basic Adaptive Asset Allocation algorithm, and wrap it in a canary universe from Defensive Asset Allocation (see previous post for links to both), which we use to control capital allocation, ranging from 0 to 1 (or beyond, in cases where leverage applies).

One of the ideas was to test out different permutations of the parameters belonging to the canary filter–a 1, 3, 6, 12 weighted filter focusing on the first month.

There are two interesting variants of this–equal weighting on the filter (both for momentum and the safety assets), and reversing the weights (that is, 1 * 1, 3 * 2, 6 * 4, 12 * 12). Here are the results of that experiment:


# different leverages
KDA_100 <- KDA(rets, leverageFactor = 1)
KDA_EW <- KDA(rets, leverageFactor = 1, momWeights = c(1,1,1,1))
KDA_rev <- KDA(rets, leverageFactor = 1, momWeights = c(1, 2, 4, 12))
# KDA_150 <- KDA(rets, leverageFactor = 1.5)
# KDA_200 <- KDA(rets, leverageFactor = 2)

# compare
compare <- na.omit(cbind(KDA_100[[2]], KDA_EW[[2]], KDA_rev[[2]]))
colnames(compare) <- c("KDA_base", "KDA_EW", "KDA_rev")
charts.PerformanceSummary(compare, colorset = c('black', 'purple', 'gold'), 
                          main = "KDA AA with various momentum weights")

stratStats(compare)
apply.yearly(compare, Return.cumulative)

With the following results:

> stratStats(compare)
                            KDA_base    KDA_EW   KDA_rev
Annualized Return         0.10990000 0.0879000 0.0859000
Annualized Std Dev        0.09070000 0.0900000 0.0875000
Annualized Sharpe (Rf=0%) 1.21180000 0.9764000 0.9814000
Worst Drawdown            0.07920363 0.1360625 0.1500333
Calmar Ratio              1.38756275 0.6460266 0.5725396
Ulcer Performance Index   3.96188378 2.4331636 1.8267448

> apply.yearly(compare, Return.cumulative)
              KDA_base       KDA_EW    KDA_rev
2008-12-31  0.15783690  0.101929228 0.08499664
2009-12-31  0.18169281 -0.004707164 0.02403531
2010-12-31  0.17797930  0.283216782 0.27889530
2011-12-30  0.17220203  0.161001680 0.03341651
2012-12-31  0.13030215  0.081280035 0.09736187
2013-12-31  0.12692163  0.120902015 0.09898799
2014-12-31  0.04028492  0.047381890 0.06883301
2015-12-31 -0.01621646 -0.005016891 0.01841095
2016-12-30  0.01253209  0.020960805 0.01580218
2017-12-29  0.15079063  0.148073455 0.18811112
2018-12-31  0.06583962  0.029804042 0.04375225
2019-02-20  0.01689700  0.003934044 0.00962020

So, one mea culpa: after comparing AllocateSmartly, my initial code (which I’ve since edited, most likely owing to getting some logic mixed up when I added functionality to lag the day of month to trade) had some sort of bug in it which gave a slightly better than expected 2015 return. Nevertheless, the results are very similar. What is interesting to note is that in the raging bull market that was essentially from 2010 onwards, the equal weight and reverse weight filters don’t perform too badly, though the reverse weight filter has a massive drawdown in 2011, but in terms of capitalizing in awful markets, the original filter as designed by Keller and TrendXplorer works best, both in terms of making money during the recession, and does better near the market bottom in 2009.

Now that that’s out of the way, the more interesting question is how does the strategy work when not trading at the end of the month? Long story short, the best time to trade it is in the last week of the month. Once the new month rolls around, hands off. If you’re talking about tranching this strategy, then you have about a week’s time to get your positions in, so I’m not sure the actual dollar volume this strategy can manage, as it’s dependent on the month-end effect (I know that one of my former managers–a brilliant man, by all accounts–said that this phenomena no longer existed, but I feel these empirical results refute that assertion in this particular instance). Here are these results:

lagCompare <- list()
for(i in 1:21) {
  offRets <- KDA(rets, leverageFactor = 1, offset = i)
  tmp <- offRets[[2]]
  colnames(tmp) <- paste0("Lag", i)
  lagCompare[[i]] <- tmp
}
lagCompare <- do.call(cbind, lagCompare)
lagCompare <- na.omit(cbind(KDA_100[[2]], lagCompare))
colnames(lagCompare)[1] <- "Base"

charts.PerformanceSummary(lagCompare, colorset=c("orange", rep("gray", 21)))
stratStats(lagCompare)

With the results:

> stratStats(lagCompare)
                                Base      Lag1      Lag2      Lag3      Lag4      Lag5      Lag6      Lag7      Lag8
Annualized Return         0.11230000 0.0584000 0.0524000 0.0589000 0.0319000 0.0319000 0.0698000 0.0790000 0.0912000
Annualized Std Dev        0.09100000 0.0919000 0.0926000 0.0945000 0.0975000 0.0957000 0.0943000 0.0934000 0.0923000
Annualized Sharpe (Rf=0%) 1.23480000 0.6357000 0.5654000 0.6229000 0.3270000 0.3328000 0.7405000 0.8460000 0.9879000
Worst Drawdown            0.07920363 0.1055243 0.1269207 0.1292193 0.1303246 0.1546962 0.1290020 0.1495558 0.1227749
Calmar Ratio              1.41786439 0.5534272 0.4128561 0.4558141 0.2447734 0.2062107 0.5410771 0.5282311 0.7428230
Ulcer Performance Index   4.03566328 1.4648618 1.1219982 1.2100649 0.4984094 0.5012318 1.3445786 1.4418132 2.3277271
                               Lag9     Lag10     Lag11     Lag12     Lag13     Lag14     Lag15     Lag16     Lag17
Annualized Return         0.0854000 0.0863000 0.0785000 0.0732000 0.0690000 0.0862000 0.0999000 0.0967000 0.1006000
Annualized Std Dev        0.0906000 0.0906000 0.0900000 0.0913000 0.0906000 0.0909000 0.0923000 0.0947000 0.0949000
Annualized Sharpe (Rf=0%) 0.9426000 0.9524000 0.8722000 0.8023000 0.7617000 0.9492000 1.0825000 1.0209000 1.0600000
Worst Drawdown            0.1278059 0.1189949 0.1197596 0.1112761 0.1294588 0.1498408 0.1224511 0.1290538 0.1274083
Calmar Ratio              0.6682006 0.7252411 0.6554796 0.6578231 0.5329880 0.5752771 0.8158357 0.7493000 0.7895878
Ulcer Performance Index   2.3120919 2.6415855 2.4441605 1.9248615 1.8096134 2.2378207 2.8753265 2.9092448 3.0703542
                             Lag18     Lag19     Lag20     Lag21
Annualized Return         0.097100 0.0921000 0.1047000 0.1019000
Annualized Std Dev        0.092900 0.0903000 0.0958000 0.0921000
Annualized Sharpe (Rf=0%) 1.044900 1.0205000 1.0936000 1.1064000
Worst Drawdown            0.100604 0.1032067 0.1161583 0.1517104
Calmar Ratio              0.965170 0.8923835 0.9013561 0.6716747
Ulcer Performance Index   3.263040 2.7159601 3.0758230 3.0414002

Essentially, the trade at the very end of the month is the only one with a Calmar ratio above 1, though the Calmar ratio from lag15 to lag 21 is about .8 or higher, with a Sharpe ratio of 1 or higher. So, there’s definitely a window of when to trade, and when not to–namely, the lag 1 through 5 variations have the worst performances by no small margin. Therefore, I strongly suspect that the 1-3-6-12 filter was designed around the idea of the end-of-month effect, or at least, not stress-tested for different trading days within the month (and given that longer-dated data is only monthly, this is understandable).

Nevertheless, I hope this does answer some people’s questions from the quant finance universe. I know that Corey Hoffstein of Think Newfound (and wow that blog is good from the perspective of properties of trend-following) loves diversifying across every bit of the process, though in this case, I do think there’s something to be said about “diworsification”.

In any case, I do think there are some future research venues for further research here.

Thanks for reading.

Right Now It’s KDA…Asset Allocation.

This post will introduce KDA Asset Allocation. KDA — I.E. Kipnis Defensive Adaptive Asset Allocation is a combination of Wouter Keller’s and TrendXplorer’s Defensive Asset Allocation, along with ReSolve Asset Management’s Adaptive Asset Allocation. This is an asset allocation strategy with a profile unlike most tactical asset allocation strategies I’ve seen before (namely, it barely loses any money in 2015, which was generally a brutal year for tactical asset allocation strategies).

So, the idea for this strategy came from reading an excellent post from TrendXplorer on the idea of a canary universe–using a pair of assets to determine when to increase exposure to risky/aggressive assets, and when to stay in cash. Rather than gauge it on the momentum of the universe itself, the paper by Wouter Keller and TrendXplorer instead uses proxy assets VWO and BND as a proxy universe. Furthermore, in which situations say to take full exposure to risky assets, the latest iteration of DAA actually recommends leveraging exposure to risky assets, which will also be demonstrated. Furthermore, I also applied the idea of the 1-3-6-12 fast filter espoused by Wouter Keller and TrendXplorer–namely, the sum of the 12 * 1-month momentum, 4 * 3-month momentum, 2 * 6-month momentum, and the 12 month momentum (that is, month * some number = 12). This puts a large emphasis on the front month of returns, both for the risk on/off assets, and the invested assets themselves.

However, rather than adopt the universe of investments from the TrendXplorer post, I decided to instead defer to the well-thought-out universe construction from Adaptive Asset Allocation, along with their idea to use a mean variance optimization approach for actually weighting the selected assets.

So, here are the rules:

Take the investment universe–SPY, VGK, EWJ, EEM, VNQ, RWX, IEF, TLT, DBC, GLD, and compute the 1-3-6-12 momentum filter for them (that is, the sum of 12 * 1-month momentum, 4 * 3-month momentum, 2* 6-month momentum and 12 month momentum), and rank them. The selected assets are those with a momentum above zero, and that are in the top 5.

Use a basic quadratic optimization algorithm on them, feeding in equal returns (as they passed the dual momentum filter), such as the portfolio.optim function from the tseries package.

From adaptive asset allocation, the covariance matrix is computed using one-month volatility estimates, and a correlation matrix that is the weighted average of the same parameters used for the momentum filter (that is, 12 * 1-month correlation + 4 * 3-month correlation + 2 * 6-month correlation + 12-month correlation, all divided by 19).

Next, compute your exposure to risky assets by which percentage of the two canary assets–VWO and BND–have a positive 1-3-6-12 momentum. If both assets have a positive momentum, leverage the portfolio (if desired). Reapply this algorithm every month.

All of the allocation not made to risky assets goes towards IEF (which is in the pool of risky assets as well, so some months may have a large IEF allocation) if it has a positive 1-3-6-12 momentum, or just stay in cash if it does not.

The one somewhat optimistic assumption made is that the strategy observes the close on a day, and enters at the close as well. Given a holding period of a month, this should not have a massive material impact as compared to a strategy which turns over potentially every day.

Here’s the R code to do this:

# KDA asset allocation 
# KDA stands for Kipnis Defensive Adaptive (Asset Allocation).

# compute strategy statistics
stratStats <- function(rets) {
  stats <- rbind(table.AnnualizedReturns(rets), maxDrawdown(rets))
  stats[5,] <- stats[1,]/stats[4,]
  stats[6,] <- stats[1,]/UlcerIndex(rets)
  rownames(stats)[4] <- "Worst Drawdown"
  rownames(stats)[5] <- "Calmar Ratio"
  rownames(stats)[6] <- "Ulcer Performance Index"
  return(stats)
}

# required libraries
require(quantmod)
require(PerformanceAnalytics)
require(tseries)

# symbols
symbols <- c("SPY", "VGK",   "EWJ",  "EEM",  "VNQ",  "RWX",  "IEF",  "TLT",  "DBC",  "GLD", "VWO", "BND")  


# get data
rets <- list()
for(i in 1:length(symbols)) {
  
    returns <- Return.calculate(Ad(get(getSymbols(symbols[i], from = '1990-01-01'))))
  colnames(returns) <- symbols[i]
  rets[[i]] <- returns
}
rets <- na.omit(do.call(cbind, rets))


# algorithm
KDA <- function(rets, offset = 0, leverageFactor = 1.5) {
  
  # get monthly endpoints, allow for offsetting ala AllocateSmartly/Newfound Research
  ep <- endpoints(rets) + offset
  ep[ep < 1] <- 1
  ep[ep > nrow(rets)] <- nrow(rets)
  ep <- unique(ep)
  epDiff <- diff(ep)
  if(last(epDiff)==1) { # if the last period only has one observation, remove it
    ep <- ep[-length(ep)]
  }
  # initialize vector holding zeroes for assets
  emptyVec <- data.frame(t(rep(0, 10)))
  colnames(emptyVec) <- symbols[1:10]
  
  
  allWts <- list()
  # we will use the 13612F filter
  for(i in 1:(length(ep)-12)) {
    
    # 12 assets for returns -- 2 of which are our crash protection assets
    retSubset <- rets[c((ep[i]+1):ep[(i+12)]),]
    epSub <- ep[i:(i+12)]
    sixMonths <- rets[(epSub[7]+1):epSub[13],]
    threeMonths <- rets[(epSub[10]+1):epSub[13],]
    oneMonth <- rets[(epSub[12]+1):epSub[13],]
    
    # computer 13612 fast momentum
    moms <- Return.cumulative(oneMonth) * 12 + Return.cumulative(threeMonths) * 4 + 
      Return.cumulative(sixMonths) * 2 + Return.cumulative(retSubset)
    assetMoms <- moms[,1:10] # Adaptive Asset Allocation investable universe
    cpMoms <- moms[,11:12] # VWO and BND from Defensive Asset Allocation
    
    # find qualifying assets
    highRankAssets <- rank(assetMoms) >= 6 # top 5 assets
    posReturnAssets <- assetMoms > 0 # positive momentum assets
    selectedAssets <- highRankAssets & posReturnAssets # intersection of the above
    
    # perform mean-variance/quadratic optimization
    investedAssets <- emptyVec
    if(sum(selectedAssets)==0) {
      investedAssets <- emptyVec
    } else if(sum(selectedAssets)==1) {
      investedAssets <- emptyVec + selectedAssets 
    } else {
      idx <- which(selectedAssets)
      # use 1-3-6-12 fast correlation average to match with momentum filter  
      cors <- (cor(oneMonth[,idx]) * 12 + cor(threeMonths[,idx]) * 4 + 
                 cor(sixMonths[,idx]) * 2 + cor(retSubset[,idx]))/19
      vols <- StdDev(oneMonth[,idx]) # use last month of data for volatility computation from AAA
      covs <- t(vols) %*% vols * cors
      
      # do standard min vol optimization
      minVolRets <- t(matrix(rep(1, sum(selectedAssets))))
      minVolWt <- portfolio.optim(x=minVolRets, covmat = covs)$pw
      names(minVolWt) <- colnames(covs)
      investedAssets <- emptyVec
      investedAssets[,selectedAssets] <- minVolWt
    }
    
    # crash protection -- between aggressive allocation and crash protection allocation
    pctAggressive <- mean(cpMoms > 0)
    investedAssets <- investedAssets * pctAggressive 
    
    pctCp <- 1-pctAggressive
    
    # if IEF momentum is positive, invest all crash protection allocation into it
    # otherwise stay in cash for crash allocation
    if(assetMoms["IEF"] > 0) {
      investedAssets["IEF"] <- investedAssets["IEF"] + pctCp
    }
    
    # leverage portfolio if desired in cases when both risk indicator assets have positive momentum
    if(pctAggressive == 1) {
      investedAssets = investedAssets * leverageFactor
    }
    
    # append to list of monthly allocations
    wts <- xts(investedAssets, order.by=last(index(retSubset)))
    allWts[[i]] <- wts
    
  }
  
  # put all weights together and compute cash allocation
  allWts <- do.call(rbind, allWts)
  allWts$CASH <- 1-rowSums(allWts)
  
  # add cash returns to universe of investments
  investedRets <- rets[,1:10]
  investedRets$CASH <- 0
  
  # compute portfolio returns
  out <- Return.portfolio(R = investedRets, weights = allWts)
  return(out)
}

# different leverages
KDA_100 <- KDA(rets, leverageFactor = 1)
KDA_150 <- KDA(rets, leverageFactor = 1.5)
KDA_200 <- KDA(rets, leverageFactor = 2)

# compare
compare <- na.omit(cbind(KDA_100, KDA_150, KDA_200))
colnames(compare) <- c("KDA_base", "KDA_lev_150%", "KDA_lev_200%")
charts.PerformanceSummary(compare, colorset = c('black', 'purple', 'gold'), 
                          main = "KDA AA with various offensive leverages")

And here are the equity curves and statistics:

What appeals to me about this strategy, is that unlike most tactical asset allocation strategies, this strategy comes out relatively unscathed by the 2015-2016 whipsaws that hurt so many other tactical asset allocation strategies. However this strategy isn’t completely flawless, as sometimes, it decides that it’d be a great time to enter full risk-on mode and hit a drawdown, as evidenced by the drawdown curve. Nevertheless, the Calmar ratios are fairly solid for a tactical asset allocation rotation strategy, and even in a brutal 2018 that decimated all risk assets, this strategy managed to post a very noticeable *positive* return. On the downside, the leverage plan actually seems to *negatively* affect risk/reward characteristics in this strategy–that is, as leverage during aggressive allocations increases, characteristics such as the Sharpe and Calmar ratio actually *decrease*.

Overall, I think there are different aspects to unpack here–such as performances of risky assets as a function of the two canary universe assets, and a more optimal leverage plan. This was just the first attempt at combining two excellent ideas and seeing where the performance goes. I also hope that this strategy can have a longer backtest over at AllocateSmartly.

Thanks for reading.

GARCH and a rudimentary application to Vol Trading

This post will review Kris Boudt’s datacamp course, along with introducing some concepts from it, discuss GARCH, present an application of it to volatility trading strategies, and a somewhat more general review of datacamp.

So, recently, Kris Boudt, one of the highest-ranking individuals pn the open-source R/Finance totem pole (contrary to popular belief, I am not the be-all end-all of coding R in finance…probably just one of the more visible individuals due to not needing to run a trading desk), taught a course on Datacamp on GARCH models.

Naturally, an opportunity to learn from one of the most intelligent individuals in the field in a hand-held course does not come along every day. In fact, on Datacamp, you can find courses from some of the most intelligent individuals in the R/Finance community, such as Joshua Ulrich, Ross Bennett (teaching PortfolioAnalytics, no less), David Matteson, and, well, just about everyone short of Doug Martin and Brian Peterson themselves. That said, most of those courses are rather introductory, but occasionally, you get a course that covers a production-tier library that allows one to do some non-trivial things, such as this course, which covers Alexios Ghalanos’s rugarch library.

Ultimately, the course is definitely good for showing the basics of rugarch. And, given how I blog and use tools, I wholly subscribe to the 80/20 philosophy–essentially that you can get pretty far using basic building blocks in creative ways, or just taking a particular punchline and applying it to some data, and throwing it into a trading strategy to see how it does.

But before we do that, let’s discuss what GARCH is.

While I’ll save the Greek notation for those that feel inclined to do a google search, here’s the acronym:

Generalized Auto-Regressive Conditional Heteroskedasticity

What it means:

Generalized: a more general form of the

Auto-Regressive: past values are used as inputs to predict future values.

Conditional: the current value differs given a past value.

Heteroskedasticity: varying volatility. That is, consider the VIX. It isn’t one constant level, such as 20. It varies with respect to time.

Or, to summarize: “use past volatility to predict future volatility because it changes over time.”

Now, there are some things that we know from empirical observation about looking at volatility in financial time series–namely that volatility tends to cluster–high vol is followed by high vol, and vice versa. That is, you don’t just have one-off huge moves one day, then calm moves like nothing ever happened. Also, volatility tends to revert over longer periods of time. That is, VIX doesn’t stay elevated for protracted periods of time, so more often than not, betting on its abatement can make some money, (assuming the timing is correct.)

Now, in the case of finance, which birthed the original GARCH, 3 individuals (Glosten-Jagannathan-Runkle) extended the model to take into account the fact that volatility in an asset spikes in the face of negative returns. That is, when did the VIX reach its heights? In the biggest of bear markets in the financial crisis. So, there’s an asymmetry in the face of positive and negative returns. This is called the GJR-GARCH model.

Now, here’s where the utility of the rugarch package comes in–rather than needing to reprogram every piece of math, Alexios Ghalanos has undertaken that effort for the good of everyone else, and implemented a whole multitude of prepackaged GARCH models that allow the end user to simply pick the type of GARCH model that best fits the assumptions the end user thinks best apply to the data at hand.

So, here’s the how-to.

First off, we’re going to get data for SPY from Yahoo finance, then specify our GARCH model.

The GARCH model has three components–the mean model–that is, assumptions about the ARMA (basic ARMA time series nature of the returns, in this case I just assumed an AR(1)), a variance model–which is the part in which you specify the type of GARCH model, along with variance targeting (which essentially forces an assumption of some amount of mean reversion, and something which I had to use to actually get the GARCH model to converge in all cases), and lastly, the distribution model of the returns. In many models, there’s some in-built assumption of normality. In rugarch, however, you can relax that assumption by specifying something such as “std” — that is, the Student T Distribution, or in this case, “sstd”–Skewed Student T Distribution. And when one thinks about the S&P 500 returns, a skewed student T distribution seems most reasonable–positive returns usually arise as a large collection of small gains, but losses occur in large chunks, so we want a distribution that can capture this property if the need arises.

<pre class="wp-block-syntaxhighlighter-code brush: plain; notranslate">
require(rugarch)
require(quantmod)
require(TTR)
require(PerformanceAnalytics)

# get SPY data from Yahoo 
getSymbols("SPY", from = '1990-01-01')

spyRets = na.omit(Return.calculate(Ad(SPY)))

# GJR garch with AR1 innovations under a skewed student T distribution for returns
gjrSpec = ugarchspec(mean.model = list(armaOrder = c(1,0)),
                      variance.model = list(model = "gjrGARCH",
                                            variance.targeting = TRUE),
                      distribution.model = "sstd")
</pre>

As you can see, with a single function call, the user can specify a very extensive model encapsulating assumptions about both the returns and the model which governs their variance. Once the model is specified,it’s equally simple to use it to create a rolling out-of-sample prediction–that is, just plug your data in, and after some burn-in period, you start to get predictions for a variety of metrics. Here’s the code to do that. 

<pre class="wp-block-syntaxhighlighter-code brush: plain; notranslate">
# Use rolling window of 504 days, refitting the model every 22 trading days
t1 = Sys.time()
garchroll = ugarchroll(gjrSpec, data = spyRets, 
n.start = 504, refit.window = "moving", refit.every = 22)
t2 = Sys.time()
print(t2-t1)

# convert predictions to data frame
garchroll = as.data.frame(garchroll)
</pre>

In this case, I use a rolling 504 day window that refits every 22 days(approximately 1 trading month). To note, if the window is too short,you may run into fail-to-converge instances, which would disallow converting the predictions to a data frame. The rolling predictions take about four minutes to run on the server instance I use, so refitting every single day is most likely not advised.

Here’s how the predictions look like:

<pre class="wp-block-syntaxhighlighter-code brush: plain; notranslate">
head(garchroll)
                      Mu       Sigma      Skew    Shape Shape(GIG)      Realized
1995-01-30  6.635618e-06 0.005554050 0.9456084 4.116495          0 -0.0043100611
1995-01-31  4.946798e-04 0.005635425 0.9456084 4.116495          0  0.0039964165
1995-02-01  6.565350e-06 0.005592726 0.9456084 4.116495          0 -0.0003310769
1995-02-02  2.608623e-04 0.005555935 0.9456084 4.116495          0  0.0059735255
1995-02-03 -1.096157e-04 0.005522957 0.9456084 4.116495          0  0.0141870212
1995-02-06 -5.922663e-04 0.005494048 0.9456084 4.116495          0  0.0042281655

</pre>

The salient quantity here is the Sigma quantity–that is, the prediction for daily volatility. This is the quantity that we want to compare against the VIX.

So the strategy we’re going to be investigating is essentially what I’ve seen referred to as VRP–the Volatility Risk Premium in Tony Cooper’s seminal paper, Easy Volatility Investing.

The idea of the VRP is that we compare some measure of realized volatility (EG running standard deviation, GARCH predictions from past data) to the VIX, which is an implied volatility (so, purely forward looking). The idea is that when realized volatility (past/current measured) is greater than future volatility, people are in a panic. Similarly, when implied volatility is greater than realized volatility, things are as they should be, and it should be feasible to harvest the volatility risk premium by shorting volatility (analogous to selling insurance).

The instruments we’ll be using for this are ZIV and VXZ. ZIV because SVXY is no longer supported on InteractiveBrokers or RobinHood, and then VXZ is its long volatility counterpart.

We’ll be using close-to-close returns; that is, get the signal on Monday morning, and transact on Monday’s close, rather than observe data on Friday’s close, and transact around that time period as well(also known as magical thinking, according to Brian Peterson).


getSymbols('^VIX', from = '1990-01-01')

# convert GARCH sigma predictions to same scale as the VIX by annualizing, multiplying by 100
garchPreds = xts(garchroll$Sigma * sqrt(252) * 100, order.by=as.Date(rownames(garchroll)))
diff = garchPreds - Ad(VIX)

require(downloader)

download('https://www.dropbox.com/s/y3cg6d3vwtkwtqx/VXZlong.TXT?raw=1', destfile='VXZlong.txt')
download('https://www.dropbox.com/s/jk3ortdyru4sg4n/ZIVlong.TXT?raw=1', destfile='ZIVlong.txt')

ziv = xts(read.zoo('ZIVlong.txt', format='%Y-%m-%d', sep = ',', header=TRUE))
vxz = xts(read.zoo('VXZlong.txt', format = '%Y-%m-%d', sep = ',', header = TRUE))

zivRets = na.omit(Return.calculate(Cl(ziv)))
vxzRets = na.omit(Return.calculate(Cl(vxz)))
vxzRets['2014-08-05'] = .045

zivSig = diff < 0 
vxzSig = diff > 0 

garchOut = lag(zivSig, 2) * zivRets + lag(vxzSig, 2) * vxzRets

histSpy = runSD(spyRets, n = 21, sample = FALSE) * sqrt(252) * 100
spyDiff = histSpy - Ad(VIX)

zivSig = spyDiff < 0 
zivSig = spyDiff > 0 

spyOut = lag(zivSig, 2) * zivRets + lag(vxzSig, 2) * vxzRets

avg = (garchOut + spyOut)/2
compare = na.omit(cbind(garchOut, spyOut, avg))
colnames(compare) = c("gjrGARCH", "histVol", "avg")

With the following output:

<pre class="wp-block-syntaxhighlighter-code brush: plain; notranslate">
stratStats <- function(rets) {
  stats <- rbind(table.AnnualizedReturns(rets), maxDrawdown(rets))
  stats[5,] = stats[1,]/stats[4,]
  stats[6,] = stats[1,]/UlcerIndex(rets)
  rownames(stats)[4] = "Worst Drawdown"
  rownames(stats)[5] = "Calmar Ratio"
  rownames(stats)[6] = "Ulcer Performance Index"
  return(stats)
}

charts.PerformanceSummary(compare)
stratStats(compare)

> stratStats(compare)
                           gjrGARCH   histVol       avg
Annualized Return         0.2195000 0.2186000 0.2303000
Annualized Std Dev        0.2936000 0.2947000 0.2614000
Annualized Sharpe (Rf=0%) 0.7477000 0.7419000 0.8809000
Worst Drawdown            0.4310669 0.5635507 0.4271594
Calmar Ratio              0.5092017 0.3878977 0.5391429
Ulcer Performance Index   1.3563017 1.0203611 1.5208926


</pre>

So, to comment on this strategy: this is definitely not something you will take and trade out of the box. Both variants of this strategy, when forced to choose a side, walk straight into the Feb 5 volatility explosion. Luckily, switching between ZIV and VXZ keeps the account from completely exploding in a spectacular failure. To note, both variants of the VRP strategy, GJR Garch and the 22 day rolling realized volatility, suffer their own period of spectacularly large drawdown–the historical volatility in 2007-2008, and currently, though this year has just been miserable for any reasonable volatility strategy, I myself am down 20%, and I’ve seen other strategists down that much as well in their primary strategies.

That said, I do think that over time, and if using the tail-end-of-the-curve instruments such as VXZ and ZIV (now that XIV is gone and SVXY no longer supported on several brokers such as Interactive Brokers and RobinHood), that there are a number of strategies that might be feasible to pass off as a sort of trading analogue to machine learning’s “weak learner”.

That said, I’m not sure how many vastly different types of ways to approach volatility trading there are that make logical sense from an intuitive perspective (that is, “these two quantities have this type of relationship, which should give a consistent edge in trading volatility” rather than “let’s over-optimize these two parameters until we eliminate every drawdown”).

While I’ve written about the VIX3M/VIX6M ratio in the past, which has formed the basis of my proprietary trading strategy, I’d certainly love to investigate other volatility trading ideas out in public. For instance, I’d love to start the volatility trading equivalent of an AllocateSmartly type website–just a compendium of a reasonable suite of volatility trading strategies, track them, charge a subscription fee, and let users customize their own type of strategies. However, the prerequisite for that is that there are a lot of reasonable ways to trade volatility that don’t just walk into tail-end events such as the 2007-2008 transition, Feb 5, and so on.

Furthermore, as some recruiters have told me that I should also cross-post my blog scripts on my Github, I’ll start doing that also, from now on.

***
One last topic: a general review of Datacamp. As some of you may know, I instruct a course on datacamp. But furthermore, I’ve spent quite a bit of time taking courses (particularly in Python) on there as well, thanks to having access by being an instructor.

Generally, here’s the gist of it: Datacamp is a terrific resource for getting your feet wet and getting a basic overview of what technologies are out there. Generally, courses follow a “few minutes of lecture, do exercises using the exact same syntax you saw in the lecture”, with a lot of the skeleton already written for you, so you don’t wind up endlessly guessing. Generally, my procedure will be: “try to complete the exercise, and if I fail, go back and look at the slides to find an analogous block of code, change some names, and fill in”. 

Ultimately, if the world of data science, machine learning, and some quantitative finance is completely new to you–if you’re the kind of person that reads my blog, and completely glosses past the code: *this* is the resource for you, and I recommend it wholeheartedly. You’ll take some courses that give you a general tour of what data scientists, and occasionally, quants, do. And in some cases, you may have a professor in a fairly advanced field, like Kris Boudt, teach a fairly advanced topic, like the state-of-the art rugarch package (this *is* an industry-used package, and is actively maintained by Alexios Ghalanos, an economist at Amazon, so it’s far more than a pedagogical tool).

That said, for someone like me, who’s trying to port his career-capable R skills to Python to land a job (my last contract ended recently, so I am formally searching for a new role), Datacamp doesn’t *quite* do the trick–just yet. While there is a large catalog of courses, it does feel like there’s a lot of breadth, though not sure how much depth in terms of getting proficient enough to land interviews on the sole merits of DataCamp course completions. While there are Python course tracks (EG python developer, which I completed, and Python data analyst, which I also completed), I’m not sure they’re sufficient in terms of “this track was developed with partnership in industry–complete this capstone course, and we have industry partners willing to interview you”.

Also, from what I’ve seen of quantitative finance taught in Python, and having to rebuild all functions from numpy/pandas, I am puzzled as to   how people do quantitative finance in Python without libraries like PerformanceAnalytics, rugarch, quantstrat, PortfolioAnalytics, and so on. Those libraries make expressing and analyzing investment ideas far more efficient, and removes a great chance of making something like an off-by-one error (also known as look-ahead bias in trading). So far, I haven’t seen the Python end of Datacamp dive deep into quantitative finance, and I hope that changes in the near future.

So, as a summary, I think this is a fantastic site for code-illiterate individuals to get their hands dirty and their feet wet with some coding, but I think the opportunity to create an economic, democratized, interest to career a-la-carte, self-paced experience is still very much there for the taking. And given the quality of instructors that Datacamp has worked with in the past (David Matteson–*the* regime change expert, I think–along with many other experts), I think Datacamp has a terrific opportunity to capitalize here.

So, if you’re the kind of person who glosses past the code: don’t gloss anymore. You can now take courses to gain an understanding of what my code does, and ask questions about it.

***
Thanks for reading.

NOTE: I am currently looking for networking opportunities and full-time roles related to my skill set. Feel free to download my resume or contact me on LinkedIn.

Principal Component Momentum?

This post will investigate using Principal Components as part of a momentum strategy.

Recently, I ran across a post from David Varadi that I thought I’d further investigate and translate into code I can explicitly display (as David Varadi doesn’t). Of course, as David Varadi is a quantitative research director with whom I’ve done good work with in the past, I find that trying to investigate his ideas is worth the time spent.

So, here’s the basic idea: in an allegedly balanced universe, containing both aggressive (e.g. equity asset class ETFs) assets and defensive assets (e.g. fixed income asset class ETFs), that principal component analysis, a cornerstone in machine learning, should have some effectiveness at creating an effective portfolio.

I decided to put that idea to the test with the following algorithm:

Using the same assets that David Varadi does, I first use a rolling window (between 6-18 months) to create principal components. Making sure that the SPY half of the loadings is always positive (that is, if the loading for SPY is negative, multiply the first PC by -1, as that’s the PC we use), and then create two portfolios–one that’s comprised of the normalized positive weights of the first PC, and one that’s comprised of the negative half.

Next, every month, I use some momentum lookback period (1, 3, 6, 10, and 12 months), and invest in the portfolio that performed best over that period for the next month, and repeat.

Here’s the source code to do that: (and for those who have difficulty following, I highly recommend James Picerno’s Quantitative Investment Portfolio Analytics in R book.

require(PerformanceAnalytics)
require(quantmod)
require(stats)
require(xts)

symbols <- c("SPY", "EFA", "EEM", "DBC", "HYG", "GLD", "IEF", "TLT")  

# get free data from yahoo
rets <- list()
getSymbols(symbols, src = 'yahoo', from = '1990-12-31')
for(i in 1:length(symbols)) {
  returns <- Return.calculate(Ad(get(symbols[i])))
  colnames(returns) <- symbols[i]
  rets[[i]] <- returns
}
rets <- na.omit(do.call(cbind, rets))

# 12 month PC rolling PC window, 3 month momentum window
pcPlusMinus <- function(rets, pcWindow = 12, momWindow = 3) {
  ep <- endpoints(rets)

  wtsPc1Plus <- NULL
  wtsPc1Minus <- NULL
  
  for(i in 1:(length(ep)-pcWindow)) {
    # get subset of returns
    returnSubset <- rets[(ep[i]+1):(ep[i+pcWindow])]
    
    # perform PCA, get first PC (I.E. pc1)
    pcs <- prcomp(returnSubset) 
    firstPc <- pcs[[2]][,1]
    
    # make sure SPY always has a positive loading
    # otherwise, SPY and related assets may have negative loadings sometimes
    # positive loadings other times, and creates chaotic return series
    
    if(firstPc['SPY'] < 0) {
      firstPc <- firstPc * -1
    }
    
    # create vector for negative values of pc1
    wtsMinus <- firstPc * -1
    wtsMinus[wtsMinus < 0] <- 0
    wtsMinus <- wtsMinus/(sum(wtsMinus)+1e-16) # in case zero weights
    wtsMinus <- xts(t(wtsMinus), order.by=last(index(returnSubset)))
    wtsPc1Minus[[i]] <- wtsMinus
    
    # create weight vector for positive values of pc1
    wtsPlus <- firstPc
    wtsPlus[wtsPlus < 0] <- 0
    wtsPlus <- wtsPlus/(sum(wtsPlus)+1e-16)
    wtsPlus <- xts(t(wtsPlus), order.by=last(index(returnSubset)))
    wtsPc1Plus[[i]] <- wtsPlus
  }
  
  # combine positive and negative PC1 weights
  wtsPc1Minus <- do.call(rbind, wtsPc1Minus)
  wtsPc1Plus <- do.call(rbind, wtsPc1Plus)
  
  # get return of PC portfolios
  pc1MinusRets <- Return.portfolio(R = rets, weights = wtsPc1Minus)
  pc1PlusRets <- Return.portfolio(R = rets, weights = wtsPc1Plus)
  
  # combine them
  combine <-na.omit(cbind(pc1PlusRets, pc1MinusRets))
  colnames(combine) <- c("PCplus", "PCminus")
  
  momEp <- endpoints(combine)
  momWts <- NULL
  for(i in 1:(length(momEp)-momWindow)){
    momSubset <- combine[(momEp[i]+1):(momEp[i+momWindow])]
    momentums <- Return.cumulative(momSubset)
    momWts[[i]] <- xts(momentums==max(momentums), order.by=last(index(momSubset)))
  }
  momWts <- do.call(rbind, momWts)
  
  out <- Return.portfolio(R = combine, weights = momWts)
  colnames(out) <- paste("PCwin", pcWindow, "MomWin", momWindow, sep="_")
  return(list(out, wtsPc1Minus, wtsPc1Plus, combine))
}


pcWindows <- c(6, 9, 12, 15, 18)
momWindows <- c(1, 3, 6, 10, 12)

permutes <- expand.grid(pcWindows, momWindows)

stratStats <- function(rets) {
  stats <- rbind(table.AnnualizedReturns(rets), maxDrawdown(rets))
  stats[5,] <- stats[1,]/stats[4,]
  stats[6,] <- stats[1,]/UlcerIndex(rets)
  rownames(stats)[4] <- "Worst Drawdown"
  rownames(stats)[5] <- "Calmar Ratio"
  rownames(stats)[6] <- "Ulcer Performance Index"
  return(stats)
}

results <- NULL
for(i in 1:nrow(permutes)) {
  tmp <- pcPlusMinus(rets = rets, pcWindow = permutes$Var1[i], momWindow = permutes$Var2[i])
  results[[i]] <- tmp[[1]]
}
results <- do.call(cbind, results)
stats <- stratStats(results)

After a cursory look at the results, it seems the performance is fairly miserable with my implementation, even by the standards of tactical asset allocation models (the good ones have a Calmar and Sharpe Ratio above 1)

Here are histograms of the Calmar and Sharpe ratios.

PCCalmarHistogram
PCSharpeHistogram

These values are generally too low for my liking. Here’s a screenshot of the table of all 25 results.

PCresultsTable.PNG

While my strategy of choosing which portfolio to hold is different from David Varadi’s (momentum instead of whether or not the aggressive portfolio is above its 200-day moving average), there are numerous studies that show these two methods are closely related, yet the results feel starkly different (and worse) compared to his site.

I’d certainly be willing to entertain suggestions as to how to improve the process, which will hopefully create some more meaningful results. I also know that AllocateSmartly expressed interest in implementing something along these lines for their estimable library of TAA strategies, so I thought I’d try to do it and see what results I’d find, which in this case, aren’t too promising.

Thanks for reading.

NOTE: I am networking, and actively seeking a position related to my skill set in either Philadelphia, New York City, or remotely. If you know of a position which may benefit from my skill set, feel free to let me know. You can reach me on my LinkedIn profile here, or email me.