Principal Component Momentum?

This post will investigate using Principal Components as part of a momentum strategy.

Recently, I ran across a post from David Varadi that I thought I’d further investigate and translate into code I can explicitly display (as David Varadi doesn’t). Of course, as David Varadi is a quantitative research director with whom I’ve done good work with in the past, I find that trying to investigate his ideas is worth the time spent.

So, here’s the basic idea: in an allegedly balanced universe, containing both aggressive (e.g. equity asset class ETFs) assets and defensive assets (e.g. fixed income asset class ETFs), that principal component analysis, a cornerstone in machine learning, should have some effectiveness at creating an effective portfolio.

I decided to put that idea to the test with the following algorithm:

Using the same assets that David Varadi does, I first use a rolling window (between 6-18 months) to create principal components. Making sure that the SPY half of the loadings is always positive (that is, if the loading for SPY is negative, multiply the first PC by -1, as that’s the PC we use), and then create two portfolios–one that’s comprised of the normalized positive weights of the first PC, and one that’s comprised of the negative half.

Next, every month, I use some momentum lookback period (1, 3, 6, 10, and 12 months), and invest in the portfolio that performed best over that period for the next month, and repeat.

Here’s the source code to do that: (and for those who have difficulty following, I highly recommend James Picerno’s Quantitative Investment Portfolio Analytics in R book.

require(PerformanceAnalytics)
require(quantmod)
require(stats)
require(xts)

symbols <- c("SPY", "EFA", "EEM", "DBC", "HYG", "GLD", "IEF", "TLT")  

# get free data from yahoo
rets <- list()
getSymbols(symbols, src = 'yahoo', from = '1990-12-31')
for(i in 1:length(symbols)) {
  returns <- Return.calculate(Ad(get(symbols[i])))
  colnames(returns) <- symbols[i]
  rets[[i]] <- returns
}
rets <- na.omit(do.call(cbind, rets))

# 12 month PC rolling PC window, 3 month momentum window
pcPlusMinus <- function(rets, pcWindow = 12, momWindow = 3) {
  ep <- endpoints(rets)

  wtsPc1Plus <- NULL
  wtsPc1Minus <- NULL
  
  for(i in 1:(length(ep)-pcWindow)) {
    # get subset of returns
    returnSubset <- rets[(ep[i]+1):(ep[i+pcWindow])]
    
    # perform PCA, get first PC (I.E. pc1)
    pcs <- prcomp(returnSubset) 
    firstPc <- pcs[[2]][,1]
    
    # make sure SPY always has a positive loading
    # otherwise, SPY and related assets may have negative loadings sometimes
    # positive loadings other times, and creates chaotic return series
    
    if(firstPc['SPY'] < 0) {
      firstPc <- firstPc * -1
    }
    
    # create vector for negative values of pc1
    wtsMinus <- firstPc * -1
    wtsMinus[wtsMinus < 0] <- 0
    wtsMinus <- wtsMinus/(sum(wtsMinus)+1e-16) # in case zero weights
    wtsMinus <- xts(t(wtsMinus), order.by=last(index(returnSubset)))
    wtsPc1Minus[[i]] <- wtsMinus
    
    # create weight vector for positive values of pc1
    wtsPlus <- firstPc
    wtsPlus[wtsPlus < 0] <- 0
    wtsPlus <- wtsPlus/(sum(wtsPlus)+1e-16)
    wtsPlus <- xts(t(wtsPlus), order.by=last(index(returnSubset)))
    wtsPc1Plus[[i]] <- wtsPlus
  }
  
  # combine positive and negative PC1 weights
  wtsPc1Minus <- do.call(rbind, wtsPc1Minus)
  wtsPc1Plus <- do.call(rbind, wtsPc1Plus)
  
  # get return of PC portfolios
  pc1MinusRets <- Return.portfolio(R = rets, weights = wtsPc1Minus)
  pc1PlusRets <- Return.portfolio(R = rets, weights = wtsPc1Plus)
  
  # combine them
  combine <-na.omit(cbind(pc1PlusRets, pc1MinusRets))
  colnames(combine) <- c("PCplus", "PCminus")
  
  momEp <- endpoints(combine)
  momWts <- NULL
  for(i in 1:(length(momEp)-momWindow)){
    momSubset <- combine[(momEp[i]+1):(momEp[i+momWindow])]
    momentums <- Return.cumulative(momSubset)
    momWts[[i]] <- xts(momentums==max(momentums), order.by=last(index(momSubset)))
  }
  momWts <- do.call(rbind, momWts)
  
  out <- Return.portfolio(R = combine, weights = momWts)
  colnames(out) <- paste("PCwin", pcWindow, "MomWin", momWindow, sep="_")
  return(list(out, wtsPc1Minus, wtsPc1Plus, combine))
}


pcWindows <- c(6, 9, 12, 15, 18)
momWindows <- c(1, 3, 6, 10, 12)

permutes <- expand.grid(pcWindows, momWindows)

stratStats <- function(rets) {
  stats <- rbind(table.AnnualizedReturns(rets), maxDrawdown(rets))
  stats[5,] <- stats[1,]/stats[4,]
  stats[6,] <- stats[1,]/UlcerIndex(rets)
  rownames(stats)[4] <- "Worst Drawdown"
  rownames(stats)[5] <- "Calmar Ratio"
  rownames(stats)[6] <- "Ulcer Performance Index"
  return(stats)
}

results <- NULL
for(i in 1:nrow(permutes)) {
  tmp <- pcPlusMinus(rets = rets, pcWindow = permutes$Var1[i], momWindow = permutes$Var2[i])
  results[[i]] <- tmp[[1]]
}
results <- do.call(cbind, results)
stats <- stratStats(results)

After a cursory look at the results, it seems the performance is fairly miserable with my implementation, even by the standards of tactical asset allocation models (the good ones have a Calmar and Sharpe Ratio above 1)

Here are histograms of the Calmar and Sharpe ratios.

PCCalmarHistogram
PCSharpeHistogram

These values are generally too low for my liking. Here’s a screenshot of the table of all 25 results.

PCresultsTable.PNG

While my strategy of choosing which portfolio to hold is different from David Varadi’s (momentum instead of whether or not the aggressive portfolio is above its 200-day moving average), there are numerous studies that show these two methods are closely related, yet the results feel starkly different (and worse) compared to his site.

I’d certainly be willing to entertain suggestions as to how to improve the process, which will hopefully create some more meaningful results. I also know that AllocateSmartly expressed interest in implementing something along these lines for their estimable library of TAA strategies, so I thought I’d try to do it and see what results I’d find, which in this case, aren’t too promising.

Thanks for reading.

NOTE: I am networking, and actively seeking a position related to my skill set in either Philadelphia, New York City, or remotely. If you know of a position which may benefit from my skill set, feel free to let me know. You can reach me on my LinkedIn profile here, or email me.

Advertisements

A Review of James Picerno’s Quantitative Investment Portfolio Analytics in R

This is a review of James Picerno’s Quantitative Investment Portfolio Analytics in R. Overall, it’s about as fantastic a book as you can get on portfolio optimization until you start getting into corner cases stemming from large amounts of assets.

Here’s a quick summary of what the book covers:

1) How to install R.

2) How to create some rudimentary backtests.

3) Momentum.

4) Mean-Variance Optimization.

5) Factor Analysis

6) Bootstrapping/Monte-Carlo simulations.

7) Modeling Tail Risk

8) Risk Parity/Vol Targeting

9) Index replication

10) Estimating impacts of shocks

11) Plotting in ggplot

12) Downloading/saving data.

All in all, the book teaches the reader many fantastic techniques to get started doing some basic portfolio management using asset-class ETFs, and under the assumption of ideal data–that is, that there are few assets with concurrent starting times, that the number of assets is much smaller than the number of observations (I.E. 10 asset class ETFs, 90 day lookback windows, for instance), and other attributes taken for granted to illustrate concepts. I myself have used these concepts time and again (and, in fact, covered some of these topics on this blog, such as volatility targeting, momentum, and mean-variance), but in some of the work projects I’ve done, the trouble begins when the number of assets grows larger than the number of observations, or when assets move in or out of the investable universe (EG a new company has an IPO or a company goes bankrupt/merges/etc.). It also does not go into the PortfolioAnalytics package, developed by Ross Bennett and Brian Peterson. Having recently started to use this package for a real-world problem, it produces some very interesting results and its potential is immense, with the large caveat that you need an immense amount of computing power to generate lots of results for large-scale problems, which renders it impractical for many individual users. A quadratic optimization on a backtest with around 2400 periods and around 500 assets per rebalancing period (days) took about eight hours on a cloud server (when done sequentially to preserve full path dependency).

However, aside from delving into some somewhat-edge-case appears-more-in-the-professional-world topics, this book is extremely comprehensive. Simply, as far as managing a portfolio of asset-class ETFs (essentially, what the inimitable Adam Butler and crew from ReSolve Asset Management talk about, along with Walter’s fantastic site, AllocateSmartly), this book will impart a lot of knowledge that goes into doing those things. While it won’t make you as comfortable as say, an experienced professional like myself is at writing and analyzing portfolio optimization backtests, it will allow you to do a great deal of your own analysis, and certainly a lot more than anyone using Excel.

While I won’t rehash what the book covers in this post, what I will say is that it does cover some of the material I’ve posted in years past. And furthermore, rather than spending half the book about topics such as motivations, behavioral biases, and so on, this book goes right into the content that readers should know in order to execute the tasks they desire. Furthermore, the content is presented in a very coherent, English-and-code, matter-of-fact way, as opposed to a bunch of abstract mathematical derivations that treats practical implementation as an afterthought. Essentially, when one buys a cookbook, they don’t get it to read half of it for motivations as to why they should bake their own cake, but on how to do it. And as far as density of how-to, this book delivers in a way I think that other authors should strive to emulate.

Furthermore, I think that this book should be required reading for any analyst wanting to work in the field. It’s a very digestible “here’s how you do X” type of book. I.E. “here’s a data set, write a backtest based on these momentum rules, use an inverse-variance weighting scheme, do a Fama-French factor analysis on it”.

In any case, in my opinion, for anyone doing any sort of tactical asset allocation analysis in R, get this book now. For anyone doing any sort of tactical asset allocation analysis in spreadsheets, buy this book sooner than now, and then see the previous sentence. In any case, I’ll certainly be keeping this book on my shelf and referencing it if need be.

Thanks for reading.

Note: I am currently contracting but am currently on the lookout for full-time positions in New York City. If you know of a position which may benefit from my skills, please let me know. My LinkedIn profile can be found here.

A Different Way To Think About Drawdown — Geometric Calmar Ratio

This post will discuss the idea of the geometric Calmar ratio — a way to modify the Calmar ratio to account for compounding returns.

So, one thing that recently had me sort of annoyed in terms of my interpretation of the Calmar ratio is this: essentially, the way I interpret it is that it’s a back of the envelope measure of how many years it takes you to recover from the worst loss. That is, if a strategy makes 10% a year (on average), and has a loss of 10%, well, intuition serves that from that point on, on average, it’ll take about a year to make up that loss–that is, a Calmar ratio of 1. Put another way, it means that on average, a strategy will make money at the end of 252 trading days.

But, that isn’t really the case in all circumstances. If an investment manager is looking to create a small, meager return for their clients, and is looking to make somewhere between 5-10%, then sure, the Calmar ratio approximation and interpretation makes sense in that context. Or, it makes sense in the context of “every year, we withdraw all profits and deposit to make up for any losses”. But in the context of a hedge fund trying to create large, market-beating returns for its investors, those hedge funds can have fairly substantial drawdowns.

Citadel–one of the gold standards of the hedge fund industry, had a drawdown of more than 50% during the financial crisis, and of course, there was https://www.reuters.com/article/us-usa-fund-volatility/exclusive-ljm-partners-shutting-its-doors-after-vol-mageddon-losses-in-u-s-stocks-idUSKCN1GC29Hat least one fund that blew up in the storm-in-a-teacup volatility spike on Feb. 5 (in other words, if those guys were professionals, what does that make me? Or if I’m an amateur, what does that make them?).

In any case, in order to recover from such losses, it’s clear that a strategy would need to make back a lot more than what it lost. Lose 25%? 33% is the high water mark. Lose 33%? 50% to get back to even. Lose 50%? 100%. Beyond that? You get the idea.

In order to capture this dynamic, we should write a new Calmar ratio to express this idea.

So here’s a function to compute the geometric calmar ratio:

require(PerformanceAnalytics)

geomCalmar <- function(r) {
  rAnn <- Return.annualized(r)
  maxDD <- maxDrawdown(r)
  toHighwater <- 1/(1-maxDD) - 1
  out <- rAnn/toHighwater
  return(out)
}

So, let's compare how some symbols stack up. We'll take a high-volatility name (AMZN), the good old S&P 500 (SPY), and a very low volatility instrument (SHY).

getSymbols(c('AMZN', 'SPY', 'SHY'), from = '1990-01-01')
rets <- na.omit(cbind(Return.calculate(Ad(AMZN)), Return.calculate(Ad(SPY)), Return.calculate(Ad(SHY))))
compare <- rbind(table.AnnualizedReturns(rets), maxDrawdown(rets), CalmarRatio(rets), geomCalmar(rets))
rownames(compare)[6] <- "Geometric Calmar"
compare

The returns start from July 31, 2002. Here are the statistics.

                           AMZN.Adjusted SPY.Adjusted SHY.Adjusted
Annualized Return             0.3450000   0.09110000   0.01940000
Annualized Std Dev            0.4046000   0.18630000   0.01420000
Annualized Sharpe (Rf=0%)     0.8528000   0.48860000   1.36040000
Worst Drawdown                0.6525491   0.55189461   0.02231459
Calmar Ratio                  0.5287649   0.16498652   0.86861760
Geometric Calmar              0.1837198   0.07393135   0.84923475

For my own proprietary volatility trading strategy, a strategy which has a Calmar above 2 (interpretation: finger in the air means that you make a new equity high every six months in the worst case scenario), here are the statistics:

> CalmarRatio(stratRetsAggressive[[2]]['2011::'])
                Close
Calmar Ratio 3.448497
> geomCalmar(stratRetsAggressive[[2]]['2011::'])
                     Close
Annualized Return 2.588094

Essentially, because of the nature of losses compounding, the geometric Calmar ratio will always be lower than the standard Calmar ratio, which is to be expected when dealing with the geometric nature of compounding returns.

Essentially, I hope that this gives individuals some thought about re-evaluating the Calmar Ratio.

Thanks for reading.

NOTES: registration for R/Finance 2018 is open. As usual, I’ll be giving a lightning talk, this time on volatility trading.

I am currently contracting and seek network opportunities, along with information about prospective full time roles starting in July. Those interested in my skill set can feel free to reach out to me on LinkedIn here.

Creating a Table of Monthly Returns With R and a Volatility Trading Interview

This post will cover two aspects: the first will be a function to convert daily returns into a table of monthly returns, complete with drawdowns and annual returns. The second will be an interview I had with David Lincoln (now on youtube) to talk about the events of Feb. 5, 2018, and my philosophy on volatility trading.

So, to start off with, a function that I wrote that’s supposed to mimic PerforamnceAnalytics’s table.CalendarReturns is below. What table.CalendarReturns is supposed to do is to create a month X year table of monthly returns with months across and years down. However, it never seemed to give me the output I was expecting, so I went and wrote another function.

Here’s the code for the function:

require(data.table)
require(PerformanceAnalytics)
require(scales)
require(Quandl)

# helper functions
pastePerc <- function(x) {return(paste0(comma(x),"%"))}
rowGsub <- function(x) {x <- gsub("NA%", "NA", x);x}

calendarReturnTable <- function(rets, digits = 3, percent = FALSE) {
  
  # get maximum drawdown using daily returns
  dds <- apply.yearly(rets, maxDrawdown)
  
  # get monthly returns
  rets <- apply.monthly(rets, Return.cumulative)
  
  # convert to data frame with year, month, and monthly return value
  dfRets <- cbind(year(index(rets)), month(index(rets)), coredata(rets))
  
  # convert to data table and reshape into year x month table
  dfRets <- data.frame(dfRets)
  colnames(dfRets) <- c("Year", "Month", "Value")
  monthNames <- c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec")
  for(i in 1:length(monthNames)) {
    dfRets$Month[dfRets$Month==i] <- monthNames[i]
  }
  dfRets <- data.table(dfRets)
  dfRets <- data.table::dcast(dfRets, Year~Month)
  
  # create row names and rearrange table in month order
  dfRets <- data.frame(dfRets)
  yearNames <- dfRets$Year
  rownames(dfRets) <- yearNames; dfRets$Year <- NULL
  dfRets <- dfRets[,monthNames]
  
  # append yearly returns and drawdowns
  yearlyRets <- apply.yearly(rets, Return.cumulative)
  dfRets$Annual <- yearlyRets
  dfRets$DD <- dds
  
  # convert to percentage
  if(percent) {
    dfRets <- dfRets * 100
  }
  
  # round for formatting
  dfRets <- apply(dfRets, 2, round, digits)
   
  # paste the percentage sign
  if(percent) {
    dfRets <- apply(dfRets, 2, pastePerc)
    dfRets <- apply(dfRets, 2, rowGsub)
    dfRets <- data.frame(dfRets)
    rownames(dfRets) <- yearNames
  }
  return(dfRets)
}

Here’s how the output looks like.

spy <- Quandl("EOD/SPY", type='xts', start_date='1990-01-01')
spyRets <- Return.calculate(spy$Adj_Close)
calendarReturnTable(spyRets, percent = FALSE)
        Jan    Feb    Mar    Apr    May    Jun    Jul    Aug    Sep    Oct    Nov    Dec Annual    DD
1993  0.000  0.011  0.022 -0.026  0.027  0.004 -0.005  0.038 -0.007  0.020 -0.011  0.012  0.087 0.047
1994  0.035 -0.029 -0.042  0.011  0.016 -0.023  0.032  0.038 -0.025  0.028 -0.040  0.007  0.004 0.085
1995  0.034  0.041  0.028  0.030  0.040  0.020  0.032  0.004  0.042 -0.003  0.044  0.016  0.380 0.026
1996  0.036  0.003  0.017  0.011  0.023  0.009 -0.045  0.019  0.056  0.032  0.073 -0.024  0.225 0.076
1997  0.062  0.010 -0.044  0.063  0.063  0.041  0.079 -0.052  0.048 -0.025  0.039  0.019  0.335 0.112
1998  0.013  0.069  0.049  0.013 -0.021  0.043 -0.014 -0.141  0.064  0.081  0.056  0.065  0.287 0.190
1999  0.035 -0.032  0.042  0.038 -0.023  0.055 -0.031 -0.005 -0.022  0.064  0.017  0.057  0.204 0.117
2000 -0.050 -0.015  0.097 -0.035 -0.016  0.020 -0.016  0.065 -0.055 -0.005 -0.075 -0.005 -0.097 0.171
2001  0.044 -0.095 -0.056  0.085 -0.006 -0.024 -0.010 -0.059 -0.082  0.013  0.078  0.006 -0.118 0.288
2002 -0.010 -0.018  0.033 -0.058 -0.006 -0.074 -0.079  0.007 -0.105  0.082  0.062 -0.057 -0.216 0.330
2003 -0.025 -0.013  0.002  0.085  0.055  0.011  0.018  0.021 -0.011  0.054  0.011  0.050  0.282 0.137
2004  0.020  0.014 -0.013 -0.019  0.017  0.018 -0.032  0.002  0.010  0.013  0.045  0.030  0.107 0.075
2005 -0.022  0.021 -0.018 -0.019  0.032  0.002  0.038 -0.009  0.008 -0.024  0.044 -0.002  0.048 0.070
2006  0.024  0.006  0.017  0.013 -0.030  0.003  0.004  0.022  0.027  0.032  0.020  0.013  0.158 0.076
2007  0.015 -0.020  0.012  0.044  0.034 -0.015 -0.031  0.013  0.039  0.014 -0.039 -0.011  0.051 0.099
2008 -0.060 -0.026 -0.009  0.048  0.015 -0.084 -0.009  0.015 -0.094 -0.165 -0.070  0.010 -0.368 0.476
2009 -0.082 -0.107  0.083  0.099  0.058 -0.001  0.075  0.037  0.035 -0.019  0.062  0.019  0.264 0.271
2010 -0.036  0.031  0.061  0.015 -0.079 -0.052  0.068 -0.045  0.090  0.038  0.000  0.067  0.151 0.157
2011  0.023  0.035  0.000  0.029 -0.011 -0.017 -0.020 -0.055 -0.069  0.109 -0.004  0.010  0.019 0.186
2012  0.046  0.043  0.032 -0.007 -0.060  0.041  0.012  0.025  0.025 -0.018  0.006  0.009  0.160 0.097
2013  0.051  0.013  0.038  0.019  0.024 -0.013  0.052 -0.030  0.032  0.046  0.030  0.026  0.323 0.056
2014 -0.035  0.046  0.008  0.007  0.023  0.021 -0.013  0.039 -0.014  0.024  0.027 -0.003  0.135 0.073
2015 -0.030  0.056 -0.016  0.010  0.013 -0.020  0.023 -0.061 -0.025  0.085  0.004 -0.017  0.013 0.119
2016 -0.050 -0.001  0.067  0.004  0.017  0.003  0.036  0.001  0.000 -0.017  0.037  0.020  0.120 0.103
2017  0.018  0.039  0.001  0.010  0.014  0.006  0.021  0.003  0.020  0.024  0.031  0.012  0.217 0.026
2018  0.056 -0.031     NA     NA     NA     NA     NA     NA     NA     NA     NA     NA  0.023 0.101

And with percentage formatting:

calendarReturnTable(spyRets, percent = TRUE)
Using 'Value' as value column. Use 'value.var' to override
         Jan      Feb     Mar     Apr     May     Jun     Jul      Aug      Sep      Oct     Nov     Dec   Annual      DD
1993  0.000%   1.067%  2.241% -2.559%  2.697%  0.367% -0.486%   3.833%  -0.726%   1.973% -1.067%  1.224%   8.713%  4.674%
1994  3.488%  -2.916% -4.190%  1.121%  1.594% -2.288%  3.233%   3.812%  -2.521%   2.843% -3.982%  0.724%   0.402%  8.537%
1995  3.361%   4.081%  2.784%  2.962%  3.967%  2.021%  3.217%   0.445%   4.238%  -0.294%  4.448%  1.573%  38.046%  2.595%
1996  3.558%   0.319%  1.722%  1.087%  2.270%  0.878% -4.494%   1.926%   5.585%   3.233%  7.300% -2.381%  22.489%  7.629%
1997  6.179%   0.957% -4.414%  6.260%  6.321%  4.112%  7.926%  -5.180%   4.808%  -2.450%  3.870%  1.910%  33.478% 11.203%
1998  1.288%   6.929%  4.876%  1.279% -2.077%  4.259% -1.351% -14.118%   6.362%   8.108%  5.568%  6.541%  28.688% 19.030%
1999  3.523%  -3.207%  4.151%  3.797% -2.287%  5.538% -3.102%  -0.518%  -2.237%   6.408%  1.665%  5.709%  20.388% 11.699%
2000 -4.979%  -1.523%  9.690% -3.512% -1.572%  1.970% -1.570%   6.534%  -5.481%  -0.468% -7.465% -0.516%  -9.730% 17.120%
2001  4.446%  -9.539% -5.599%  8.544% -0.561% -2.383% -1.020%  -5.933%  -8.159%   1.302%  7.798%  0.562% -11.752% 28.808%
2002 -0.980%  -1.794%  3.324% -5.816% -0.593% -7.376% -7.882%   0.680% -10.485%   8.228%  6.168% -5.663% -21.588% 32.968%
2003 -2.459%  -1.348%  0.206%  8.461%  5.484%  1.066%  1.803%   2.063%  -1.089%   5.353%  1.092%  5.033%  28.176% 13.725%
2004  1.977%   1.357% -1.320% -1.892%  1.712%  1.849% -3.222%   0.244%   1.002%   1.288%  4.451%  3.015%  10.704%  7.526%
2005 -2.242%   2.090% -1.828% -1.874%  3.222%  0.150%  3.826%  -0.937%   0.800%  -2.365%  4.395% -0.190%   4.827%  6.956%
2006  2.401%   0.573%  1.650%  1.263% -3.012%  0.264%  0.448%   2.182%   2.699%   3.152%  1.989%  1.337%  15.847%  7.593%
2007  1.504%  -1.962%  1.160%  4.430%  3.392% -1.464% -3.131%   1.283%   3.870%   1.357% -3.873% -1.133%   5.136%  9.925%
2008 -6.046%  -2.584% -0.903%  4.766%  1.512% -8.350% -0.899%   1.545%  -9.437% -16.519% -6.961%  0.983% -36.807% 47.592%
2009 -8.211% -10.745%  8.348%  9.935%  5.845% -0.068%  7.461%   3.694%   3.545%  -1.923%  6.161%  1.907%  26.364% 27.132%
2010 -3.634%   3.119%  6.090%  1.547% -7.945% -5.175%  6.830%  -4.498%   8.955%   3.820%  0.000%  6.685%  15.057% 15.700%
2011  2.330%   3.474%  0.010%  2.896% -1.121% -1.688% -2.000%  -5.498%  -6.945%  10.915% -0.406%  1.044%   1.888% 18.609%
2012  4.637%   4.341%  3.216% -0.668% -6.006%  4.053%  1.183%   2.505%   2.535%  -1.820%  0.566%  0.900%  15.991%  9.687%
2013  5.119%   1.276%  3.798%  1.921%  2.361% -1.336%  5.168%  -2.999%   3.168%   4.631%  2.964%  2.589%  32.307%  5.552%
2014 -3.525%   4.552%  0.831%  0.695%  2.321%  2.064% -1.344%   3.946%  -1.379%   2.355%  2.747% -0.256%  13.462%  7.273%
2015 -2.963%   5.620% -1.574%  0.983%  1.286% -2.029%  2.259%  -6.095%  -2.543%   8.506%  0.366% -1.718%   1.252% 11.910%
2016 -4.979%  -0.083%  6.724%  0.394%  1.701%  0.350%  3.647%   0.120%   0.008%  -1.734%  3.684%  2.028%  12.001% 10.306%
2017  1.789%   3.929%  0.126%  0.993%  1.411%  0.637%  2.055%   0.292%   2.014%   2.356%  3.057%  1.209%  21.700%  2.609%
2018  5.636%  -3.118%      NA      NA      NA      NA      NA       NA       NA       NA      NA      NA   2.342% 10.102%

That covers it for the function. Now, onto volatility trading. Dodging the February short volatility meltdown has, in my opinion, been one of the best out-of-sample validators for my volatility trading research. My subscriber numbers confirm it, as I’ve received 12 new subscribers this month, as individuals interested in the volatility trading space have gained a newfound respect for the risk management that my system uses. After all, it’s the down months that vindicate system traders like myself that do not employ leverage in the up times. Those interested in following my trades can subscribe here. Furthermore, recently, I was able to get a chance to speak with David Lincoln about my background, and philosophy on trading in general, and trading volatility in particular. Those interested can view the interview here.

Thanks for reading.

NOTE: I am currently interested in networking, full-time positions related to my skill set, and long-term consulting projects. Those interested in discussing professional opportunities can find me on LinkedIn after writing a note expressing their interest.

Which Implied Volatility Ratio Is Best?

This post will be about comparing a volatility signal using three different variations of implied volatility indices to predict when to enter a short volatility position.

In volatility trading, there are three separate implied volatility indices that have a somewhat long history for trading–the VIX (everyone knows this one), the VXV (more recently changed to be called the VIX3M), which is like the VIX, except for a three-month period), and the VXMT, which is the implied six-month volatility period.

This relationship gives investigation into three separate implied volatility ratios: VIX/VIX3M (aka VXV), VIX/VXMT, and VIX3M/VXMT, as predictors for entering a short (or long) volatility position.

So, let’s get the data.

require(downloader)
require(quantmod)
require(PerformanceAnalytics)
require(TTR)
require(data.table)

download("http://www.cboe.com/publish/scheduledtask/mktdata/datahouse/vix3mdailyprices.csv", 
         destfile="vxvData.csv")
download("http://www.cboe.com/publish/ScheduledTask/MktData/datahouse/vxmtdailyprices.csv", 
         destfile="vxmtData.csv")

VIX <- fread("http://www.cboe.com/publish/scheduledtask/mktdata/datahouse/vixcurrent.csv", skip = 1)
VIXdates <- VIX$Date
VIX$Date <- NULL; VIX <- xts(VIX, order.by=as.Date(VIXdates, format = '%m/%d/%Y'))


vxv <- xts(read.zoo("vxvData.csv", header=TRUE, sep=",", format="%m/%d/%Y", skip=2))
vxmt <- xts(read.zoo("vxmtData.csv", header=TRUE, sep=",", format="%m/%d/%Y", skip=2))

download("https://dl.dropboxusercontent.com/s/jk6der1s5lxtcfy/XIVlong.TXT",
         destfile="longXIV.txt")

xiv <- xts(read.zoo("longXIV.txt", format="%Y-%m-%d", sep=",", header=TRUE))

xivRets <- Return.calculate(Cl(xiv))

One quick strategy to investigate is simple–the idea that the ratio should be below 1 (I.E. contango in implied volatility term structure) and decreasing (below a moving average). So when the ratio will be below 1 (that is, with longer-term implied volatility greater than shorter-term), and the ratio will be below its 60-day moving average, the strategy will take a position in XIV.

Here’s the code to do that.

vixVix3m <- Cl(VIX)/Cl(vxv)
vixVxmt <- Cl(VIX)/Cl(vxmt)
vix3mVxmt <- Cl(vxv)/Cl(vxmt)

stratStats <- function(rets) {
  stats <- rbind(table.AnnualizedReturns(rets), maxDrawdown(rets))
  stats[5,] <- stats[1,]/stats[4,]
  stats[6,] <- stats[1,]/UlcerIndex(rets)
  rownames(stats)[4] <- "Worst Drawdown"
  rownames(stats)[5] <- "Calmar Ratio"
  rownames(stats)[6] <- "Ulcer Performance Index"
  return(stats)
}

maShort <- SMA(vixVix3m, 60)
maMed <- SMA(vixVxmt, 60)
maLong <- SMA(vix3mVxmt, 60)

sigShort <- vixVix3m < 1 & vixVix3m < maShort
sigMed <- vixVxmt < 1 & vixVxmt < maMed 
sigLong <- vix3mVxmt < 1 & vix3mVxmt < maLong 

retsShort <- lag(sigShort, 2) * xivRets 
retsMed <- lag(sigMed, 2) * xivRets 
retsLong <- lag(sigLong, 2) * xivRets

compare <- na.omit(cbind(retsShort, retsMed, retsLong))
colnames(compare) <- c("Short", "Medium", "Long")
charts.PerformanceSummary(compare)
stratStats(compare)

With the following performance:

3ratios.PNG

> stratStats(compare)
                              Short    Medium     Long
Annualized Return         0.5485000 0.6315000 0.638600
Annualized Std Dev        0.3874000 0.3799000 0.378900
Annualized Sharpe (Rf=0%) 1.4157000 1.6626000 1.685600
Worst Drawdown            0.5246983 0.5318472 0.335756
Calmar Ratio              1.0453627 1.1873711 1.901976
Ulcer Performance Index   3.7893478 4.6181788 5.244137

In other words, the VIX3M/VXMT sports the lowest drawdowns (by a large margin) with higher returns.

So, when people talk about which implied volatility ratio to use, I think this offers some strong evidence for the longer-out horizon as a predictor for which implied vol term structure to use. It’s also why it forms the basis of my subscription strategy.

Thanks for reading.

NOTE: I am currently seeking a full-time position (remote or in the northeast U.S.) related to my skill set demonstrated on this blog. Please message me on LinkedIn if you know of any opportunities which may benefit from my skill set.

Replicating Volatility ETN Returns From CBOE Futures

This post will demonstrate how to replicate the volatility ETNs (XIV, VXX, ZIV, VXZ) from CBOE futures, thereby allowing any individual to create synthetic ETF returns from before their inception, free of cost.

So, before I get to the actual algorithm, it depends on an update to the term structure algorithm I shared some months back.

In that algorithm, mistakenly (or for the purpose of simplicity), I used calendar days as the time to expiry, when it should have been business days, which also accounts for weekends, and holidays, which are an irritating artifact to keep track of.

So here’s the salient change, in the loop that calculates times to expiry:

source("tradingHolidays.R")

masterlist <- list()
timesToExpiry <- list()
for(i in 1:length(contracts)) {
  
  # obtain data
  contract <- contracts[i]
  dataFile <- paste0(stem, contract, "_VX.csv")
  expiryYear <- paste0("20",substr(contract, 2, 3))
  expiryMonth <- monthMaps$monthNum[monthMaps$futureStem == substr(contract,1,1)]
  expiryDate <- dates$dates[dates$dateMon == paste(expiryYear, expiryMonth, sep="-")]
  data <- tryCatch(
    {
      suppressWarnings(fread(dataFile))
    }, error = function(e){return(NULL)}
  )
  
  if(!is.null(data)) {
    # create dates
    dataDates <- as.Date(data$`Trade Date`, format = '%m/%d/%Y')
    
    # create time to expiration xts
    toExpiry <- xts(bizdays(dataDates, expiryDate), order.by=dataDates)
    colnames(toExpiry) <- contract
    timesToExpiry[[i]] <- toExpiry
    
    # get settlements
    settlement <- xts(data$Settle, order.by=dataDates)
    colnames(settlement) <- contract
    masterlist[[i]] <- settlement
  }
}

The one salient line in particular, is this:

toExpiry <- xts(bizdays(dataDates, expiryDate), order.by=dataDates)

What is this bizdays function? It comes from the bizdays package in R.

There’s also the tradingHolidays.R script, which makes further use of the bizdays package. Here’s what goes on under the hood in tradingHolidays.R, for those that wish to replicate the code:

easters <- read.csv("easters.csv", header = FALSE)
easterDates <- as.Date(paste0(substr(easters$V2, 1, 6), easters$V3), format = '%m/%d/%Y')-2

nonEasters <- read.csv("nonEasterHolidays.csv", header = FALSE)
nonEasterDates <- as.Date(paste0(substr(nonEasters$V2, 1, 6), nonEasters$V3), format = '%m/%d/%Y')

weekdayNonEasters <- nonEasterDates[which(!weekdays(nonEasterDates) %in% c("Saturday", "Sunday"))]

hurricaneSandy <- as.Date(c("2012-10-29", "2012-10-30"))

holidays <- sort(c(easterDates, weekdayNonEasters, hurricaneSandy))
holidays <- holidays[holidays > as.Date("2003-12-31") & holidays < as.Date("2019-01-01")]


require(bizdays)

create.calendar("HolidaysUS", holidays, weekdays = c("saturday", "sunday"))
bizdays.options$set(default.calendar = "HolidaysUS")

There are two CSVs that I manually compiled, but will share screenshots of–they are the easter holidays (because they have to be adjusted for turning Sunday to Friday because of Easter Fridays), and the rest of the national holidays.

Here is what the easters csv looks like:

eastersScreenshot

And the nonEasterHolidays, which contains New Year’s Day, MLK Jr. Day, President’s Day, Memorial Day, Independence Day, Labor Day, Thanksgiving Day, and Christmas Day (along with their observed dates) nonEasterScreenshot CSV:

Furthermore, we need to adjust for the two days that equities were not trading due to Hurricane Sandy.

So then, the list of holidays looks like this:

> holidays
  [1] "2004-01-01" "2004-01-19" "2004-02-16" "2004-04-09" "2004-05-31" "2004-07-05" "2004-09-06" "2004-11-25"
  [9] "2004-12-24" "2004-12-31" "2005-01-17" "2005-02-21" "2005-03-25" "2005-05-30" "2005-07-04" "2005-09-05"
 [17] "2005-11-24" "2005-12-26" "2006-01-02" "2006-01-16" "2006-02-20" "2006-04-14" "2006-05-29" "2006-07-04"
 [25] "2006-09-04" "2006-11-23" "2006-12-25" "2007-01-01" "2007-01-02" "2007-01-15" "2007-02-19" "2007-04-06"
 [33] "2007-05-28" "2007-07-04" "2007-09-03" "2007-11-22" "2007-12-25" "2008-01-01" "2008-01-21" "2008-02-18"
 [41] "2008-03-21" "2008-05-26" "2008-07-04" "2008-09-01" "2008-11-27" "2008-12-25" "2009-01-01" "2009-01-19"
 [49] "2009-02-16" "2009-04-10" "2009-05-25" "2009-07-03" "2009-09-07" "2009-11-26" "2009-12-25" "2010-01-01"
 [57] "2010-01-18" "2010-02-15" "2010-04-02" "2010-05-31" "2010-07-05" "2010-09-06" "2010-11-25" "2010-12-24"
 [65] "2011-01-17" "2011-02-21" "2011-04-22" "2011-05-30" "2011-07-04" "2011-09-05" "2011-11-24" "2011-12-26"
 [73] "2012-01-02" "2012-01-16" "2012-02-20" "2012-04-06" "2012-05-28" "2012-07-04" "2012-09-03" "2012-10-29"
 [81] "2012-10-30" "2012-11-22" "2012-12-25" "2013-01-01" "2013-01-21" "2013-02-18" "2013-03-29" "2013-05-27"
 [89] "2013-07-04" "2013-09-02" "2013-11-28" "2013-12-25" "2014-01-01" "2014-01-20" "2014-02-17" "2014-04-18"
 [97] "2014-05-26" "2014-07-04" "2014-09-01" "2014-11-27" "2014-12-25" "2015-01-01" "2015-01-19" "2015-02-16"
[105] "2015-04-03" "2015-05-25" "2015-07-03" "2015-09-07" "2015-11-26" "2015-12-25" "2016-01-01" "2016-01-18"
[113] "2016-02-15" "2016-03-25" "2016-05-30" "2016-07-04" "2016-09-05" "2016-11-24" "2016-12-26" "2017-01-02"
[121] "2017-01-16" "2017-02-20" "2017-04-14" "2017-05-29" "2017-07-04" "2017-09-04" "2017-11-23" "2017-12-25"
[129] "2018-01-01" "2018-01-15" "2018-02-19" "2018-03-30" "2018-05-28" "2018-07-04" "2018-09-03" "2018-11-22"
[137] "2018-12-25"

So once we have a list of holidays, we use the bizdays package to set the holidays and weekends (Saturday and Sunday) as our non-business days, and use that function to calculate the correct times to expiry.

So, now that we have the updated expiry structure, we can write a function that will correctly replicate the four main volatility ETNs–XIV, VXX, ZIV, and VXZ.

Here’s the English explanation:

VXX is made up of two contracts–the front month, and the back month, and has a certain number of trading days (AKA business days) that it trades until expiry, say, 17. During that timeframe, the front month (let’s call it M1) goes from being the entire allocation of funds, to being none of the allocation of funds, as the front month contract approaches expiry. That is, as a contract approaches expiry, the second contract gradually receives more and more weight, until, at expiry of the front month contract, the second month contract contains all of the funds–just as it *becomes* the front month contract. So, say you have 17 days to expiry on the front month. At the expiry of the previous contract, the second month will have a weight of 17/17–100%, as it becomes the front month. Then, the next day, that contract, now the front month, will have a weight of 16/17 at settle, then 15/17, and so on. That numerator is called dr, and the denominator is called dt.

However, beyond this, there’s a second mechanism that’s responsible for the VXX looking like it does as compared to a basic futures contract (that is, the decay responsible for short volatility’s profits), and that is the “instantaneous” rebalancing. That is, the returns for a given day are today’s settles multiplied by yesterday’s weights, over yesterday’s settles multiplied by yesterday’s weights, minus one. That is, (S_1_t * dr/dt_t-1 + S_2_t * 1-dr/dt_t-1) / (S_1_t-1 * dr/dt_t-1 + S_2_t-1 * 1-dr/dt_t-1) – 1 (I could use a tutorial on LaTeX). So, when you move forward a day, well, tomorrow, today’s weights become t-1. Yet, when were the assets able to be rebalanced? Well, in the ETNs such as VXX and VXZ, the “hand-waving” is that it happens instantaneously. That is, the weight for the front month was 93%, the return was realized at settlement (that is, from settle to settle), and immediately after that return was realized, the front month’s weight shifts from 93%, to, say, 88%. So, say Credit Suisse (that issues these ETNs ), has $10,000 (just to keep the arithmetic and number of zeroes tolerable, obviously there are a lot more in reality) worth of XIV outstanding after immediately realizing returns, it will sell $500 of its $9300 in the front month, and immediately move them to the second month, so it will immediately go from $9300 in M1 and $700 in M2 to $8800 in M1 and $1200 in M2. When did those $500 move? Immediately, instantaneously, and if you like, you can apply Clarke’s Third Law and call it “magically”.

The only exception is the day after roll day, in which the second month simply becomes the front month as the previous front month expires, so what was a 100% weight on the second month will now be a 100% weight on the front month, so there’s some extra code that needs to be written to make that distinction.

That’s the way it works for VXX and XIV. What’s the difference for VXZ and ZIV? It’s really simple–instead of M1 and M2, VXZ uses the exact same weightings (that is, the time remaining on front month vs. how many days exist for that contract to be the front month), uses M4, M5, M6, and M7, with M4 taking dr/dt, M5 and M6 always being 1, and M7 being 1-dr/dt.

In any case, here’s the code.

syntheticXIV <- function(termStructure, expiryStructure) {
  
  # find expiry days
  zeroDays <- which(expiryStructure$C1 == 0)
  
  # dt = days in contract period, set after expiry day of previous contract
  dt <- zeroDays + 1
  dtXts <- expiryStructure$C1[dt,]
  
  # create dr (days remaining) and dt structure
  drDt <- cbind(expiryStructure[,1], dtXts)
  colnames(drDt) <- c("dr", "dt")
  drDt$dt <- na.locf(drDt$dt)
  
  # add one more to dt to account for zero day
  drDt$dt <- drDt$dt + 1
  drDt <- na.omit(drDt)
  
  # assign weights for front month and back month based on dr and dt
  wtC1 <- drDt$dr/drDt$dt
  wtC2 <- 1-wtC1
  
  # realize returns with old weights, "instantaneously" shift to new weights after realizing returns at settle
  # assumptions are a bit optimistic, I think
  valToday <- termStructure[,1] * lag(wtC1) + termStructure[,2] * lag(wtC2)
  valYesterday <- lag(termStructure[,1]) * lag(wtC1) + lag(termStructure[,2]) * lag(wtC2)
  syntheticRets <- (valToday/valYesterday) - 1
  
  # on the day after roll, C2 becomes C1, so reflect that in returns
  zeroes <- which(drDt$dr == 0) + 1 
  zeroRets <- termStructure[,1]/lag(termStructure[,2]) - 1
  
  # override usual returns with returns that reflect back month becoming front month after roll day
  syntheticRets[index(syntheticRets)[zeroes]] <- zeroRets[index(syntheticRets)[zeroes]]
  syntheticRets <- na.omit(syntheticRets)
  
  # vxxRets are syntheticRets
  vxxRets <- syntheticRets
  
  # repeat same process for vxz -- except it's dr/dt * 4th contract + 5th + 6th + 1-dr/dt * 7th contract
  vxzToday <- termStructure[,4] * lag(wtC1) + termStructure[,5] + termStructure[,6] + termStructure[,7] * lag(wtC2)
  vxzYesterday <- lag(termStructure[,4]) * lag(wtC1) + lag(termStructure[, 5]) + lag(termStructure[,6]) + lag(termStructure[,7]) * lag(wtC2)
  syntheticVxz <- (vxzToday/vxzYesterday) - 1
  
  # on zero expiries, next day will be equal (4+5+6)/lag(5+6+7) - 1
  zeroVxz <- (termStructure[,4] + termStructure[,5] + termStructure[,6])/
    lag(termStructure[,5] + termStructure[,6] + termStructure[,7]) - 1
  syntheticVxz[index(syntheticVxz)[zeroes]] <- zeroVxz[index(syntheticVxz)[zeroes]]
  syntheticVxz <- na.omit(syntheticVxz)
  
  vxzRets <- syntheticVxz
  
  # write out weights for actual execution
  if(last(drDt$dr!=0)) {
    print(paste("Previous front-month weight was", round(last(drDt$dr)/last(drDt$dt), 5)))
    print(paste("Front-month weight at settle today will be", round((last(drDt$dr)-1)/last(drDt$dt), 5)))
    if((last(drDt$dr)-1)/last(drDt$dt)==0){
      print("Front month will be zero at end of day. Second month becomes front month.")
    }
  } else {
    print("Previous front-month weight was zero. Second month became front month.")
    print(paste("New front month weights at settle will be", round(last(expiryStructure[,2]-1)/last(expiryStructure[,2]), 5)))
  }
  
  return(list(vxxRets, vxzRets))
}

So, a big thank you goes out to Michael Kapler of Systematic Investor Toolbox for originally doing the replication and providing his code. My code essentially does the same thing, in, hopefully a more commented way.

So, ultimately, does it work? Well, using my updated term structure code, I can test that.

While I’m not going to paste my entire term structure code (again, available here, just update the script with my updates from this post), here’s how you’d run the new function:

> out <- syntheticXIV(termStructure, expiryStructure)
[1] "Previous front-month weight was 0.17647"
[1] "Front-month weight at settle today will be 0.11765"

And since it returns both the vxx returns and the vxz returns, we can compare them both.

compareXIV <- na.omit(cbind(xivRets, out[[1]] * -1))
colnames(compareXIV) <- c("XIV returns", "Replication returns")
charts.PerformanceSummary(compareXIV)

With the result:

xivComparison

Basically, a perfect match.

Let’s do the same thing, with ZIV.

compareZIV <- na.omit(cbind(ZIVrets, out[[2]]*-1))
colnames(compareZIV) <- c("ZIV returns", "Replication returns")
charts.PerformanceSummary(compareZIV)

zivComparison.PNG

So, rebuilding from the futures does a tiny bit better than the ETN. But the trajectory is largely identical.

That concludes this post. I hope it has shed some light on how these volatility ETNs work, and how to obtain them directly from the futures data published by the CBOE, which are the inputs to my term structure algorithm.

This also means that for institutions interested in trading my strategy, that they can obtain leverage to trade the futures-composite replicated variants of these ETNs, at greater volume.

Thanks for reading.

NOTES: For those interested in a retail subscription strategy to trading volatility, do not hesitate to subscribe to my volatility-trading strategy. For those interested in employing me full-time or for long-term consulting projects, I can be reached on my LinkedIn, or my email: ilya.kipnis@gmail.com.

(Don’t Get) Contangled Up In Noise

This post will be about investigating the efficacy of contango as a volatility trading signal.

For those that trade volatility (like me), a term you may see that’s somewhat ubiquitous is the term “contango”. What does this term mean?

Well, simple: it just means the ratio of the second month of VIX futures over the first. The idea being is that when the second month of futures is more than the first, that people’s outlook for volatility is greater in the future than it is for the present, and therefore, the futures are “in contango”, which is most of the time.

Furthermore, those that try to find decent volatility trading ideas may have often seen that futures in contango implies that holding a short volatility position will be profitable.

Is this the case?

Well, there’s an easy way to answer that.

First off, refer back to my post on obtaining free futures data from the CBOE.

Using this data, we can obtain our signal (that is, in order to run the code in this post, run the code in that post).

xivSig <- termStructure$C2 > termStructure$C1

Now, let’s get our XIV data (again, big thanks to Mr. Helmuth Vollmeier for so kindly providing it.

require(downloader)
require(quantmod)
require(PerformanceAnalytics)
require(TTR)
require(Quandl)
require(data.table)

download("https://dl.dropboxusercontent.com/s/jk6der1s5lxtcfy/XIVlong.TXT",
         destfile="longXIV.txt")

download("https://dl.dropboxusercontent.com/s/950x55x7jtm9x2q/VXXlong.TXT", 
         destfile="longVXX.txt") #requires downloader package

xiv <- xts(read.zoo("longXIV.txt", format="%Y-%m-%d", sep=",", header=TRUE))
xivRets <- Return.calculate(Cl(xiv))

Now, here’s how this works: as the CBOE doesn’t update its settles until around 9:45 AM EST on the day after (EG a Tuesday’s settle data won’t release until Wednesday at 9:45 AM EST), we have to enter at close of the day after the signal fires. (For those wondering, my subscription strategy uses this mechanism, giving subscribers ample time to execute throughout the day.)

So, let’s calculate our backtest returns. Here’s a stratStats function to compute some summary statistics.

stratStats <- function(rets) {
  stats <- rbind(table.AnnualizedReturns(rets), maxDrawdown(rets))
  stats[5,] <- stats[1,]/stats[4,]
  stats[6,] <- stats[1,]/UlcerIndex(rets)
  rownames(stats)[4] <- "Worst Drawdown"
  rownames(stats)[5] <- "Calmar Ratio"
  rownames(stats)[6] <- "Ulcer Performance Index"
  return(stats)
}
stratRets <- lag(xivSig, 2) * xivRets
charts.PerformanceSummary(stratRets)
stratStats(stratRets)

With the following results:

contangled

                                 C2
Annualized Return         0.3749000
Annualized Std Dev        0.4995000
Annualized Sharpe (Rf=0%) 0.7505000
Worst Drawdown            0.7491131
Calmar Ratio              0.5004585
Ulcer Performance Index   0.7984454

So, this is obviously a disaster. Visual inspection will show devastating, multi-year drawdowns. Using the table.Drawdowns command, we can view the worst ones.

> table.Drawdowns(stratRets, top = 10)
         From     Trough         To   Depth Length To Trough Recovery
1  2007-02-23 2008-12-15 2010-04-06 -0.7491    785       458      327
2  2010-04-21 2010-06-30 2010-10-25 -0.5550    131        50       81
3  2014-07-07 2015-12-11 2017-01-04 -0.5397    631       364      267
4  2012-03-27 2012-06-01 2012-07-17 -0.3680     78        47       31
5  2017-07-25 2017-08-17 2017-10-16 -0.3427     59        18       41
6  2013-09-27 2014-04-11 2014-06-18 -0.3239    182       136       46
7  2011-02-15 2011-03-16 2011-04-26 -0.3013     49        21       28
8  2013-02-20 2013-03-01 2013-04-23 -0.2298     44         8       36
9  2013-05-20 2013-06-20 2013-07-08 -0.2261     34        23       11
10 2012-12-19 2012-12-28 2013-01-23 -0.2154     23         7       16

So, the top 3 are horrendous, and then anything above 30% is still pretty awful. A couple of those drawdowns lasted multiple years as well, with a massive length to the trough. 458 trading days is nearly two years, and 364 is about one and a half years. Imagine seeing a strategy be consistently on the wrong side of the trade for nearly two years, and when all is said and done, you’ve lost three-fourths of everything in that strategy.

There’s no sugar-coating this: such a strategy can only be called utter trash.

Let’s try one modification: we’ll require both contango (C2 > C1), and that contango be above its 60-day simple moving average, similar to my VXV/VXMT strategy.

contango <- termStructure$C2/termStructure$C1
maContango <- SMA(contango, 60)
xivSig <- contango > 1 & contango > maContango
stratRets <- lag(xivSig, 2) * xivRets

With the results:

stillContangled

> stratStats(stratRets)
                                 C2
Annualized Return         0.4271000
Annualized Std Dev        0.3429000
Annualized Sharpe (Rf=0%) 1.2457000
Worst Drawdown            0.5401002
Calmar Ratio              0.7907792
Ulcer Performance Index   1.7515706

Drawdowns:

> table.Drawdowns(stratRets, top = 10)
         From     Trough         To   Depth Length To Trough Recovery
1  2007-04-17 2008-03-17 2010-01-06 -0.5401    688       232      456
2  2014-12-08 2014-12-31 2015-04-09 -0.2912     84        17       67
3  2017-07-25 2017-09-05 2017-12-08 -0.2610     97        30       67
4  2012-03-27 2012-06-21 2012-07-02 -0.2222     68        61        7
5  2012-07-20 2012-12-06 2013-02-08 -0.2191    139        96       43
6  2015-10-20 2015-11-13 2016-03-16 -0.2084    102        19       83
7  2013-12-27 2014-04-11 2014-05-23 -0.1935    102        73       29
8  2017-03-21 2017-05-17 2017-06-26 -0.1796     68        41       27
9  2012-02-07 2012-02-15 2012-03-12 -0.1717     24         7       17
10 2016-09-08 2016-09-09 2016-12-06 -0.1616     63         2       61

So, a Calmar still safely below 1, an Ulcer Performance Index still in the basement, a maximum drawdown that’s long past the point that people will have abandoned the strategy, and so on.

So, even though it was improved, it’s still safe to say this strategy doesn’t perform too well. Even after the large 2007-2008 drawdown, it still gets some things pretty badly wrong, like being exposed to all of August 2017.

While I think there are applications to contango in volatility investing, I don’t think its use is in generating the long/short volatility signal on its own. Rather, I think other indices and sources of data do a better job of that. Such as the VXV/VXMT, which has since been iterated on to form my subscription strategy.

Thanks for reading.

NOTE: I am currently seeking networking opportunities, long-term projects, and full-time positions related to my skill set. My linkedIn profile can be found here.