A Review of Alpha Architect’s (Wes Gray/Jack Vogel) Quantitative Momentum book

This post will be an in-depth review of Alpha Architect’s Quantitative Momentum book. Overall, in my opinion, the book is terrific for those that are practitioners in fund management in the individual equity space, and still contains ideas worth thinking about outside of that space. However, the system detailed in the book benefits from nested ranking (rank along axis X, take the top decile, rank along axis Y within the top decile in X, and take the top decile along axis Y, essentially restricting selection to 1% of the universe). Furthermore, the book does not do much to touch upon volatility controls, which may have enhanced the system outlined greatly.

Before I get into the brunt of this post, I’d like to let my readers know that I formalized my nuts and bolts of quantstrat series of posts as a formal datacamp course. Datacamp is a very cheap way to learn a bunch of R, and financial applications are among those topics. My course covers the basics of quantstrat, and if those who complete the course like it, I may very well create more advanced quantstrat modules on datacamp. I’m hoping that the finance courses are well-received, since there are financial topics in R I’d like to learn myself that a 45 minute lecture doesn’t really suffice for (such as Dr. David Matteson’s change points magic, PortfolioAnalytics, and so on). In any case, here’s the link.

So, let’s start with a summary of the book:

Part 1 is several chapters that are the giant expose- of why momentum works (or at least, has worked for at least 20 years since 1993)…namely that human biases and irrational behaviors act in certain ways to make the anomaly work. Then there’s also the career risk (AKA it’s a risk factor, and so, if your benchmark is SPY and you run across a 3+ year period of underperformance, you have severe career risk), and essentially, a whole litany of why a professional asset manager would get fired but if you just stick with the anomaly over many many years and ride out multi-year stretches of relative underperformance, you’ll come out ahead in the very long run.

Generally, I feel like there’s work to be done if this is the best that can be done, but okay, I’ll accept it.

Essentially, part 1 is for the uninitiated. For those that have been around the momentum block a couple of times, they can skip right past this. Unfortunately, it’s half the book, so that leaves a little bit of a sour taste in the mouth.

Next, part two is where, in my opinion, the real meat and potatoes of the book–the “how”.

Essentially, the algorithm can be boiled down into the following:

Taking the universe of large and mid-cap stocks, do the following:

1) Sort the stocks into deciles by 2-12 momentum–that is, at the end of every month, calculate momentum by last month’s closing price minus the closing price 12 months ago. Essentially, research states that there’s a reversion effect on the 1-month momentum. However, this effect doesn’t carry over into the ETF universe in my experience.

2) Here’s the interesting part which makes the book worth picking up on its own (in my opinion): after sorting into deciles, rank the top decile by the following metric: multiply the sign of the 2-12 momentum by the following equation: (% negative returns – % positive). Essentially, the idea here is to determine smoothness of momentum. That is, in the most extreme situation, imagine a stock that did absolutely nothing for 230 days, and then had one massive day that gave it its entire price appreciation (think Google when it had a 10% jump off of better-than-expected numbers reports), and in the other extreme, a stock that simply had each and every single day be a small positive price appreciation. Obviously, you’d want the second type of stock. That’s this idea. Again, sort into deciles, and take the top decile. Therefore, taking the top decile of the top decile leaves you with 1% of the universe. Essentially, this makes the idea very difficult to replicate–since you’d need to track down a massive universe of stocks. That stated, I think the expression is actually a pretty good idea as a stand-in for volatility. That is, regardless of how volatile an asset is–whether it’s as volatile as a commodity like DBC, or as non-volatile as a fixed-income product like SHY, this expression is an interesting way of stating “this path is choppy” vs. “this path is smooth”. I might investigate this expression on my blog further in the future.

3) Lastly, if the portfolio is turning over quarterly instead of monthly, the best months to turn it over are the months preceding end-of-quarter month (that is, February, May, August, November) because a bunch of amateur asset managers like to “window dress” their portfolios. That is, they had a crummy quarter, so at the last month before they have to send out quarterly statements, they load up on some recent winners so that their clients don’t think they’re as amateur as they really let on, and there’s a bump for this. Similarly, January has some selling anomalies due to tax-loss harvesting. As far as practical implementations go, I think this is a very nice touch. Conceding the fact that turning over every month may be a bit too expensive, I like that Wes and Jack say “sure, you want to turn it over once every three months, but on *which* months?”. It’s a very good question to ask if it means you get an additional percentage point or 150 bps a year from that, as it just might cover the transaction costs and then some.

All in all, it’s a fairly simple to understand strategy. However, the part that sort of gates off the book to a perfect replication is the difficulty in obtaining the CRSP data.

However, I do commend Alpha Architect for disclosing the entire algorithm from start to finish.

Furthermore, if the basic 2-12 momentum is not enough, there’s an appendix detailing other types of momentum ideas (earnings momentum, ranking by distance to 52-week highs, absolute historical momentum, and so on). None of these strategies are really that much better than the basic price momentum strategy, so they’re there for those interested, but it seems there’s nothing really ground-breaking there. That is, if you’re trading once a month, there’s only so many ways of saying “hey, I think this thing is going up!”

I also like that Wes and Jack touched on the fact that trend-following, while it doesn’t improve overall CAGR or Sharpe, does a massive amount to improve on max drawdown. That is, if faced with the prospect of losing 70-80% of everything, and losing only 30%, that’s an easy choice to make. Trend-following is good, even a simplistic version.

All in all, I think the book accomplishes what it sets out to do, which is to present a well-researched algorithm. Ultimately, the punchline is on Alpha Architect’s site (I believe they have some sort of monthly stock filter). Furthermore, the book states that there are better risk-adjusted returns when combined with the algorithm outlined in the “quantitative value” book. In my experience, I’ve never had value algorithms impress me in the backtests I’ve done, but I can chalk that up to me being inexperienced with all the various valuation metrics.

My criticism of the book, however, is this:

The momentum algorithm in the book misses what I feel is one key component: volatility targeting control. Simply, the paper “momentum has its moments” (which I covered in my hypothesis-driven development series of posts) essentially states that the usual Fama-French momentum strategy does far better from a risk-reward strategy by deleveraging during times of excessive volatility, and avoiding momentum crashes. I’m not sure why Wes and Jack didn’t touch upon this paper, since the implementation is very simple (target/realized volatility = leverage factor). Ideally, I’d love if Wes or Jack could send me the stream of returns for this strategy (preferably daily, but monthly also works).

Essentially, I think this book is very comprehensive. However, I think it also has a somewhat “don’t try this at home” feel to it due to the data requirement to replicate it. Certainly, if your broker charges you $8 a transaction, it’s not a feasible strategy to drop several thousand bucks a year on transaction costs that’ll just give your returns to your broker. However, I do wonder if the QMOM ETF (from Alpha Architect, of course) is, in fact, a better version of this strategy, outside of the management fee.

In any case, my final opinion is this: while this book leaves a little bit of knowledge on the table, on a whole, it accomplishes what it sets out to do, is clear with its procedures, and provides several worthwhile ideas. For the price of a non-technical textbook (aka those $60+ books on amazon), this book is a steal.

4.5/5 stars.

Thanks for reading.

NOTE: While I am currently employed in a successful analytics capacity, I am interested in hearing about full-time positions more closely related to the topics on this blog. If you have a full-time position which can benefit from my current skills, please let me know. My Linkedin can be found here.

A Book Review of ReSolve Asset Management’s Adaptive Asset Allocation

This review will review the “Adaptive Asset Allocation: Dynamic Global Portfolios to Profit in Good Times – and Bad” book by the people at ReSolve Asset Management. Overall, this book is a definite must-read for those who have never been exposed to the ideas within it. However, when it comes to a solution that can be fully replicated, this book is lacking.

Okay, it’s been a while since I reviewed my last book, DIY Financial Advisor, from the awesome people at Alpha Architect. This book in my opinion, is set up in a similar sort of format.

This is the structure of the book, and my reviews along with it:

Part 1: Why in the heck you actually need to have a diversified portfolio, and why a diversified portfolio is a good thing. In a world in which there is so much emphasis put on single-security performance, this is certainly something that absolutely must be stated for those not familiar with portfolio theory. It highlights the example of two people–one from Abbott Labs, and one from Enron, who had so much of their savings concentrated in their company’s stock. Mr. Abbott got hit hard and changed his outlook on how to save for retirement, and Mr. Enron was never heard from again. Long story short: a diversified portfolio is good, and a properly diversified portfolio can offset one asset’s zigs with another asset’s zags. This is the key to establishing a stream of returns that will help meet financial goals. Basically, this is your common sense story (humans love being told stories) so as to motivate you to read the rest of the book. It does its job, though for someone like me, it’s more akin to a big “wait for it, wait for it…and there’s the reason why we should read on, as expected”.

Part 2: Something not often brought up in many corners of the quant world (because it’s real life boring stuff) is the importance not only of average returns, but *when* those returns are achieved. Namely, imagine your everyday saver. At the beginning of their careers, they’re taking home less salary and have less money in their retirement portfolio (or speculation portfolio, but the book uses retirement portfolio). As they get into middle age and closer to retirement, they have a lot more money in said retirement portfolio. Thus, strong returns are most vital when there is more cash available *to* the portfolio, and the difference between mediocre returns at the beginning and strong returns at the end of one’s working life as opposed to vice versa is *astronomical* and cannot be understated. Furthermore, once *in* retirement, strong returns in the early years matter far more than returns in the later years once money has been withdrawn out of the portfolio (though I’d hope that a portfolio’s returns can be so strong that one can simply “live off the interest”). Or, put more intuitively: when you have $10,000 in your portfolio, a 20% drawdown doesn’t exactly hurt because you can make more money and put more into your retirement account. But when you’re 62 and have $500,000 and suddenly lose 30% of everything, well, that’s massive. How much an investor wants to avoid such a scenario cannot be understated. Warren Buffett once said that if you can’t bear to lose 50% of everything, you shouldn’t be in stocks. I really like this part of the book because it shows just how dangerous the ideas of “a 50% drawdown is unavoidable” and other “stay invested for the long haul” refrains are. Essentially, this part of the book makes a resounding statement that any financial adviser keeping his or her clients invested in equities when they’re near retirement age is doing something not very advisable, to put it lightly. In my opinion, those who advise pension funds should especially keep this section of the book in mind, since for some people, the long-term may be coming to an end, and what matters is not only steady returns, but to make sure the strategy doesn’t fall off a cliff and destroy decades of hard-earned savings.

Part 3: This part is also one that is a very important read. First off, it lays out in clear terms that the long-term forward-looking valuations for equities are at rock bottom. That is, the expected forward 15-year returns are very low, using approximately 75 years of evidence. Currently, according to the book, equity valuations imply a *negative* 15-year forward return. However, one thing I *will* take issue with is that while forward-looking long-term returns for equities may be very low, if one believed this chart and only invested in the stock market when forecast 15-year returns were above the long term average, one would have missed out on both the 2003-2007 bull runs, *and* the one since 2009 that’s just about over. So, while the book makes a strong case for caution, readers should also take the chart with a grain of salt in my opinion. However, another aspect of portfolio construction that this book covers is how to construct a robust (assets for any economic environment) and coherent (asset classes balanced in number) universe for implementation with any asset allocation algorithm. I think this bears repeating: universe selection is an extremely important topic in the discussion of asset allocation, yet there is very little discussion about it. Most research/topics simply take some “conventional universe”, such as “all stocks on the NYSE”, or “all the stocks in the S&P 500”, or “the entire set of the 50-60 most liquid futures” without consideration for robustness and coherence. This book is the first source I’ve seen that actually puts this topic under a magnifying glass besides “finger in the air pick and choose”.

Part 4: and here’s where I level my main criticism at this book. For those that have read “Adaptive Asset Allocation: A Primer”, this section of the book is basically one giant copy and paste. It’s all one large buildup to “momentum rank + min-variance optimization”. All well and good, until there’s very little detail beyond the basics as to how the minimum variance portfolio was constructed. Namely, what exactly is the minimum variance algorithm in use? Is it one of the poor variants susceptible to numerical instability inherent in inverting sample covariance matrices? Or is it a heuristic like David Varadi’s minimum variance and minimum correlation algorithm? The one feeling I absolutely could not shake was that this book had a perfect opportunity to present a robust approach to minimum variance, and instead, it’s long on concept, short on details. While the theory of “maximize return for unit risk” is all well and good, the actual algorithm to implement that theory into practice is not trivial, with the solutions taught to undergrads and master’s students having some well-known weaknesses. On top of this, one thing that got hammered into my head in the past was that ranking *also* had a weakness at the inclusion/exclusion point. E.G. if, out of ten assets, the fifth asset had a momentum of say, 10.9%, and the sixth asset had a momentum of 10.8%, how are we so sure the fifth is so much better? And while I realize that this book was ultimately meant to be a primer, in my opinion, it would have been a no-objections five-star if there were an appendix that actually went into some detail on how to go from the simple concepts and included a small numerical example of some algorithms that may address the well-known weaknesses. This doesn’t mean Greek/mathematical jargon. Just an appendix that acknowledged that not every reader is someone only picking up his first or second book about systematic investing, and that some of us are familiar with the “whys” and are more interested in the “hows”. Furthermore, I’d really love to know where the authors of this book got their data to back-date some of these ETFs into the 90s.

Part 5: some more formal research on topics already covered in the rest of the book–namely a section about how many independent bets one can take as the number of assets grow, if I remember it correctly. Long story short? You *easily* get the most bang for your buck among disparate asset classes, such as treasuries of various duration, commodities, developed vs. emerging equities, and so on, as opposed to trying to pick among stocks in the same asset class (though there’s some potential for alpha there…just…a lot less than you imagine). So in case the idea of asset class selection, not stock selection wasn’t beaten into the reader’s head before this point, this part should do the trick. The other research paper is something I briefly skimmed over which went into more depth about volatility and retirement portfolios, though I felt that the book covered this topic earlier on to a sufficient degree by building up the intuition using very understandable scenarios.

So that’s the review of the book. Overall, it’s a very solid piece of writing, and as far as establishing the *why*, it does an absolutely superb job. For those that aren’t familiar with the concepts in this book, this is definitely a must-read, and ASAP.

However, for those familiar with most of the concepts and looking for a detailed “how” procedure, this book does not deliver as much as I would have liked. And I realize that while it’s a bad idea to publish secret sauce, I bought this book in the hope of being exposed to a new algorithm presented in the understandable and intuitive language that the rest of the book was written in, and was left wanting.

Still, that by no means diminishes the impact of the rest of the book. For those who are more likely to be its target audience, it’s a 5/5. For those that wanted some specifics, it still has its gem on universe construction.

Overall, I rate it a 4/5.

Thanks for reading.

Review: Invoance’s TRAIDE application

This review will be about Inovance Tech’s TRAIDE system. It is an application geared towards letting retail investors apply proprietary machine learning algorithms to assist them in creating systematic trading strategies. Currently, my one-line review is that while I hope the company founders mean well, the application is still in an early stage, and so, should be checked out by potential users/venture capitalists as something with proof of potential, rather than a finished product ready for mass market. While this acts as a review, it’s also my thoughts as to how Inovance Tech can improve its product.

A bit of background: I have spoken several times to some of the company’s founders, who sound like individuals at about my age level (so, fellow millennials). Ultimately, the selling point is this:

Systematic trading is cool.
Machine learning is cool.
Therefore, applying machine learning to systematic trading is awesome! (And a surefire way to make profits, as Renaissance Technologies has shown.)

While this may sound a bit snarky, it’s also, in some ways, true. Machine learning has become the talk of the town, from IBM’s Watson (RenTec itself hired a bunch of speech recognition experts from IBM a couple of decades back), to Stanford’s self-driving car (invented by Sebastian Thrun, who now heads Udacity), to the Netflix prize, to god knows what Andrew Ng is doing with deep learning at Baidu. Considering how well machine learning has done at much more complex tasks than “create a half-decent systematic trading algorithm”, it shouldn’t be too much to ask this powerful field at the intersection of computer science and statistics to help the retail investor glued to watching charts generate a lot more return on his or her investments than through discretionary chart-watching and noise trading. To my understanding from conversations with Inovance Tech’s founders, this is explicitly their mission.

(Note: Dr. Wes Gray and Alpha Architect, in their book DIY Financial Advisor, have already established that listening to pundits, and trying to succeed at discretionary trading, is on a whole, a loser’s game)

However, I am not sure that Inovance’s TRAIDE application actually accomplishes this mission in its current state.

Here’s how it works:

Users select one asset at a time, and select a date range (data going back to Dec. 31, 2009). Assets are currently limited to highly liquid currency pairs, and can take the following settings: 1 hour, 2 hour, 4 hour, 6 hour, or daily bar time frames.

Users then select from a variety of indicators, ranging from technical (moving averages, oscillators, volume calculations, etc. Mostly an assortment of 20th century indicators, though the occasional adaptive moving average has managed to sneak in–namely KAMA–see my DSTrading package, and MAMA–aka the Mesa Adaptive Moving Average, from John Ehlers) to more esoteric ones such as some sentiment indicators. Here’s where things start to head south for me, however. Namely, that while it’s easy to add as many indicators as a user would like, there is basically no documentation on any of them, with no links to reference, etc., so users will have to bear the onus of actually understanding what each and every one of the indicators they select actually does, and whether or not those indicators are useful. The TRAIDE application makes zero effort (thus far) to actually get users acquainted with the purpose of these indicators, what their theoretical objective is (measure conviction in a trend, detect a trend, oscillator type indicator, etc.)

Furthermore, regarding indicator selections, users also specify one parameter setting for each indicator per strategy. E.G. if I had an EMA crossover, I’d have to create a new strategy for a 20/100 crossover, a 21/100 crossover, rather than specifying something like this:

short EMA: 20-60
long EMA: 80-200

Quantstrat itself has this functionality, and while I don’t recall covering parameter robustness checks/optimization (in other words, testing multiple parameter sets–whether one uses them for optimization or robustness is up to the user, not the functionality) in quantstrat on this blog specifically, this information very much exists in what I deem “the official quantstrat manual”, found here. In my opinion, the option of covering a range of values is mandatory so as to demonstrate that any given parameter setting is not a random fluke. Outside of quantstrat, I have demonstrated this methodology in my Hypothesis Driven Development posts, and in coming up for parameter selection for volatility trading.

Where TRAIDE may do something interesting, however, is that after the user specifies his indicators and parameters, its “proprietary machine learning” algorithms (WARNING: COMPLETELY BLACK BOX) determine for what range of values of the indicators in question generated the best results within the backtest, and assign them bullishness and bearishness scores. In other words, “looking backwards, these were the indicator values that did best over the course of the sample”. While there is definite value to exploring the relationships between indicators and future returns, I think that TRAIDE needs to do more in this area, such as reporting P-values, conviction, and so on.

For instance, if you combine enough indicators, your “rule” is a market order that’s simply the intersection of all of the ranges of your indicators. For instance, TRAIDE may tell a user that the strongest bullish signal when the difference of the moving averages is between 1 and 2, the ADX is between 20 and 25, the ATR is between 0.5 and 1, and so on. Each setting the user selects further narrows down the number of trades the simulation makes. In my opinion, there are more ways to explore the interplay of indicators than simply one giant AND statement, such as an “OR” statement, of some sort. (E.G. select all values, put on a trade when 3 out of 5 indicators fall into the selected bullish range in order to place more trades). While it may be wise to filter down trades to very rare instances if trading a massive amount of instruments, such that of several thousand possible instruments, only several are trading at any given time, with TRAIDE, a user selects only *one* asset class (currently, one currency pair) at a time, so I’m hoping to see TRAIDE create more functionality in terms of what constitutes a trading rule.

After the user selects both a long and a short rule (by simply filtering on indicator ranges that TRAIDE’s machine learning algorithms have said are good), TRAIDE turns that into a backtest with a long equity curve, short equity curve, total equity curve, and trade statistics for aggregate, long, and short trades. For instance, in quantstrat, one only receives aggregate trade statistics. Whether long or short, all that matters to quantstrat is whether or not the trade made or lost money. For sophisticated users, it’s trivial enough to turn one set of rules on or off, but TRAIDE does more to hold the user’s hand in that regard.

Lastly, TRAIDE then generates MetaTrader4 code for a user to download.

And that’s the process.

In my opinion, while what Inovance Tech has set out to do with TRAIDE is interesting, I wouldn’t recommend it in its current state. For sophisticated individuals that know how to go through a proper research process, TRAIDE is too stringent in terms of parameter settings (one at a time), pre-coded indicators (its target audience probably can’t program too well), and asset classes (again, one at a time). However, for retail investors, my issue with TRAIDE is this:

There is a whole assortment of undocumented indicators, which then move to black-box machine learning algorithms. The result is that the user has very little understanding of what the underlying algorithms actually do, and why the logic he or she is presented with is the output. While TRAIDE makes it trivially easy to generate any one given trading system, as multiple individuals have stated in slightly different ways before, writing a strategy is the easy part. Doing the work to understand if that strategy actually has an edge is much harder. Namely, checking its robustness, its predictive power, its sensitivity to various regimes, and so on. Given TRAIDE’s rather short data history (2010 onwards), and coupled with the opaqueness that the user operates under, my analogy would be this:

It’s like giving an inexperienced driver the keys to a sports car in a thick fog on a winding road. Nobody disputes that a sports car is awesome. However, the true burden of the work lies in making sure that the user doesn’t wind up smashing into a tree.

Overall, I like the TRAIDE application’s mission, and I think it may have potential as something for the retail investors that don’t intend to learn the ins-and-outs of coding a trading system in R (despite me demonstrating many times over how to put such systems together). I just think that there needs to be more work put into making sure that the results a user sees are indicative of an edge, rather than open the possibility of highly-flexible machine learning algorithms chasing ghosts in one of the noisiest and most dynamic data sets one can possibly find.

My recommendations are these:

1) Multiple asset classes
2) Allow parameter ranges, and cap the number of trials at any given point (E.G. 4 indicators with ten settings each = 10,000 possible trading systems = blow up the servers). To narrow down the number of trial runs, use techniques from experimental design to arrive at decent combinations. (I wish I remembered my response surface methodology techniques from my master’s degree about now!)
3) Allow modifications of order sizing (E.G. volatility targeting, stop losses), such as I wrote about in my hypothesis-driven development posts.
4) Provide *some* sort of documentation for the indicators, even if it’s as simple as a link to investopedia (preferably a lot more).
5) Far more output is necessary, especially for users who don’t program. Namely, to distinguish whether or not there is a legitimate edge, or if there are too few observations to reject the null hypothesis of random noise.
6) Far longer data histories. 2010 onwards just seems too short of a time-frame to be sure of a strategy’s efficacy, at least on daily data (may not be true for hourly).
7) Factor in transaction costs. Trading on an hourly time frame will mean far less P&L per trade than on a daily resolution. If MT4 charges a fixed ticket price, users need to know how this factors into their strategy.
8) Lastly, dogfooding. When I spoke last time with Inovance Tech’s founders, they claimed they were using their own algorithms to create a forex strategy, which was doing well in live trading. By the time more of these suggestions are implemented, it’d be interesting to see if they have a track record as a fund, in addition to as a software provider.

If all of these things are accounted for and automated, the product will hopefully accomplish its mission of bringing systematic trading and machine learning to more people. I think TRAIDE has potential, and I’m hoping that its staff will realize that potential.

Thanks for reading.

NOTE: I am currently contracting in downtown Chicago, and am always interested in networking with professionals in the systematic trading and systematic asset management/allocation spaces. Find my LinkedIn here.

EDIT: Today in my email (Dec. 3, 2015), I received a notice that Inovance was making TRAIDE completely free. Perhaps they want a bunch more feedback on it?

A Review of DIY Financial Advisor, by Gray, Vogel, and Foulke

This post will review the DIY Financial Advisor book, which I thought was a very solid read, and especially pertinent to those who are more beginners at investing (especially systematic investing). While it isn’t exactly perfect, it’s about as excellent a primer on investing as one will find out there that is accessible to the lay-person, in my opinion.

Okay, so, official announcement: I am starting a new section of posts called “Reviews”, which I received from being asked to review this book. Essentially, I believe that anyone that’s trying to create a good product that will help my readers deserves a spotlight, and I myself would like to know what cool and innovative financial services/products are coming about. For those who’d like exposure on this site, if you’re offering an affordable and innovative product or service that can be of use to an audience like mine, reach out to me.

Anyway, this past weekend, while relocating to Chicago, I had the pleasure of reading Alpha Architect’s (Gray, Vogel, Foulke) book “DIY financial advisor”, essentially making a case as to why a retail investor should be able to outperform the expert financial advisers that charge several percentage points a year to manage one’s wealth.
The book starts off by citing various famous studies showing how many subtle subconscious biases and fallacies human beings are susceptible to (there are plenty), such as falling for complexity, overconfidence, and so on—none of which emotionless computerized systems and models suffer from. Furthermore, it also goes on to provide several anecdotal examples of experts gone bust, such as Victor Niederhoffer, who blew up not once, but twice (and rumor has it he blew up a third time), and studies showing that systematic data analysis has shown to beat expert recommendations time and again—including when experts were armed with the outputs of the models themselves. Throw in some quotes from Jim Simons (CEO of the best hedge fund in the world, Renaissance Technologies), and the first part of the book can be summed up like this:

1) Your rank and file human beings are susceptible to many subconscious biases.

2) Don’t trust the recommendations of experts. Even simpler models have systematically outperformed said “experts”. Some experts have even blown up, multiple times even (E.G. Victor Niederhoffer).

3) Building an emotionless system will keep these human fallacies from wrecking your investment portfolio.

4) Sticking to a well thought-out system is a good idea, even when it’s uncomfortable—such as when a marine has to wear a Kevlar helmet, hold extra ammo, and extra water in a 126 degree Iraq desert (just ask Dr./Captain Gray!).

This is all well and good—essentially making a very strong case for why you should build a system, and let the system do the investment allocation heavy lifting for you.
Next, the book goes into the FACTS acronym of different manager selection—fees, access, complexity, taxes, and search. Fees: how much does it cost to have someone manage your investments? Pretty self-explanatory here. Access: how often can you pull your capital (EG a hedge fund that locks you up for a year especially when it loses money should be run from, and fast). Complexity: do you understand how the investments are managed? Taxes: long-term capital gains, or shorter-term? Generally, very few decent systems will be holding for a year or more, so in my opinion, expect to pay short-term taxes. Search: that is, how hard is it to find a good candidate? Given the sea of hedge funds (especially those with short-term track records, or only track records managing tiny amounts of money), how hard is it to find a manager who’ll beat the benchmark after fees? Answer: very difficult. In short, all the glitzy sophisticated managers you hear about? Far from a terrific deal, assuming you can even find one.

Continuing, the book goes into two separate anomalies that should form the foundation for any equity investment strategy – value, and momentum. The value system essentially goes long the top decile of the EBIT/TEV metric for the top 60% of market-cap companies traded on the NYSE every year. In my opinion, this is a system that is difficult to implement for the average investor in terms of managing the data process for this system, along with having the proper capital to allocate to all the various companies. That is, if you have a small amount of capital to invest, you might not be able to get that equal weight allocation across a hundred separate companies. However, I believe that with the QVAL and IVAL etfs (from Alpha Architect, and full disclosure, I have some of my IRA invested there), I think that the systematic value component can be readily accessed through these two funds.

The momentum strategy, however, is much simpler. There’s a momentum component, and a moving average component. There’s some math that shows that these two signals are related (a momentum signal is actually proportional to a difference of a moving average and its last value), and the ROBUST system that this book proposes is a combination of a momentum signal and an SMA signal. This is how it works. Assume you have $100,000 and 5 assets to invest in, for the sake of math. Divide the portfolio into a $50,000 momentum component and a $50,000 moving average component. Every month, allocate $10,000 to each of the five assets with a positive 12-month momentum, or stay in cash for that asset. Next, allocate another $10,000 to each of the five assets with a price above a 12-month simple moving average. It’s that simple, and given the recommended ETFs (commodities, bonds, foreign stocks, domestic stocks, real estate), it’s a system that most investors can rather easily implement, especially if they’ve been following my blog.

For those interested in more market anomalies (especially value anomalies), there’s a chapter which contains a large selection of academic papers that go back and forth on the efficacies of various anomalies and how well they can predict returns. So, for those interested, it’s there.

The book concludes with some potential pitfalls which a DIY investor should be aware of when running his or her own investments, which is essentially another psychology chapter.
Overall, in my opinion, this book is fairly solid in terms of reasons why a retail investor should take the plunge and manage his or her own investments in a systematic fashion. Namely, that flesh and blood advisers are prone to human error, and on top of that, usually charge an unjustifiably high fee, and then deliver lackluster performance. The book recommends a couple of simple systems, one of which I think anyone who can copy and paste some rudimentary R can follow (the ROBUST momentum system), and another which I think most stay-at-home investors should shy away from (the value system, simply because of the difficulty of dealing with all that data), and defer to either or both of Alpha Architect’s 2 ETFs.
In terms of momentum, there are the ALFA, GMOM, and MTUM tickers (do your homework, I’m long ALFA) for various differing exposures to this anomaly, for those that don’t want to pay the constant transaction costs/incur short-term taxes of running their own momentum strategy.

In terms of where this book comes up short, here are my two cents:
Tested over nearly a century, the risk-reward tradeoffs of these systems can still be frightening at times. That is, for a system that delivers a CAGR of around 15%, are you still willing to risk a 50% drawdown? Losing half of everything on the cusp of retirement sounds very scary, no matter the long-term upside.

Furthermore, this book keeps things simple, with an intended audience of mom and pop investors (who have historically underperformed the S&P 500!). While I think it accomplishes this, I think there could have been value added, even for such individuals, by outlining some ETFs or simple ETF/ETN trading systems that can diversify a portfolio. For instance, while volatility trading sounds very scary, in the context of providing diversification, it may be worth looking into. For instance, 2008 was a banner year for most volatility trading strategies that managed to go long and stay long volatility through the crisis. I myself still have very little knowledge of all of the various exotic ETFs that are popping up left and right, and I would look very favorably on a reputable source that can provide a tour of some that can provide respectable return diversification to a basic equities/fixed-income/real asset ETF-based portfolio, as outlined in one of the chapters in this book, and other books, such as Meb Faber’s Global Asset Allocation (a very cheap ebook).

One last thing that I’d like to touch on—this book is written in a very accessible style, and even the math (yes, math!) is understandable for someone that’s passed basic algebra. It’s something that can be read in one or two sittings, and I’d recommend it to anyone that’s a beginner in investing or systematic investing.

Overall, I give this book a solid 4/5 stars. It’s simple, easily understood, and brings systematic investing to the masses in a way that many people can replicate at home. However, I would have liked to see some beyond-the-basics content as well given the plethora of different ETFs.

Thanks for reading.